

Alaska Department of Transportation & Public Facilities

ATM 530, Concrete Mix Designs by ACI & Packing Density Methods

Rich Giessel

January 2024

Our mission is to Keep Alaska Moving through service and infrastructure.

1. Scope

- Gradation optimization for Flowable (traditional) Concrete
- Volumetric Mix Design procedure for flowable ready-mix concrete often used for sidewalks, floor slabs, fixed formed pavements, parking lots, walls, and pumpable concrete applications. (A fully detailed, ACI 301 and ACI 211 compliant, example mix design with spreadsheets and graphs is given in Appendix D)
- Gradation optimization for Slip-Formed Concrete
- Gradation optimization for Self-Consolidating Concrete

2. Significance

- Concrete proportions, properties and performance are determined by the aggregate that forms most of the matrix of this composite material.
- For each sieve size the Tarantula Curve provides a recommended maximum retention limit and a suggested minimum retention limit.
- An adequate amount of coarse sand (#8 to #30) provides the cohesion properties of the concrete and reduces segregation.
- An adequate amount of fine sand (#30 to #200) provides the finishability, consolidation, and richness of a mixture.
- This method includes historic ACI 211 and newer Packing Density proportioning procedures.

3. Apparatus

- Ovens and hot plates thermostatically controlled to maintain the various required temperatures within ± 3°C (5°F).
- Fresh Concrete Testing equipment for Slump, Air, Unit Weight, and Temperature, AASHTO T 119, T 152, T 121, and T 309 respectively.
- Water tank with temperature at 23.0 ± 1.7 °C (73.4 ± 3.0°F) per AASHTO T 85.
- Balance or scale: Capacity sufficient for the principal sample mass, readable to 0.1 g or 0.1 percent of the total sample mass and meeting the requirements of AASHTO M 231.
- Sieve shaker meeting the requirements of WAQTC FOP for AASHTO T 27/T 11.
- Specimen molds with lids, either 4x8" or 6x12" that conform to ASTM C470.
- Compression testing machine meeting the requirements of ASTM C39 and referenced documents.
- Surface Resistivity testing apparatus meeting the requirements of AASHTO T 358.
- Shrinkage testing apparatus meeting the requirements of ASTM C157.
- Air-entrained concrete maximum bubble spacing factor of 0.008 inch by ASTM C457 or AASHTO T 395, Sequential Air Method (SAM) number \leq 0.20 on fresh concrete.

4. Aggregates

4.1. Perform gradations in accordance with AASHTO T 11 and T 27

- Combined Aggregate gradations must be within the Tarantula Curve boundary limits for each sieve size in each of the following mix types:
 - 1. Flowable
 - 2. Slip-Formed
 - 3. Self-Consolidating

4.1.1. Flowable 2 Aggregate Mix Design

			-0	Sieve Anal	ysis -				
	AASHTO Gr.#	\$ 67	AASHTO G	ir.#	8			AASHTO Gr.#	M6
C	oarse Aggrega	ate	Intermed	iate Aggre	egate			Fine Aggr	egate
Sieve	% Pass	Specs	Sieve	% Pass	Specs		Sieve	% Pass	Specs
1 1/2"	100						3/8"		100
1"	100	100	1"		100		#4	100	95-100
3/4"	95	90-100	3/4"		100		#8	95	80-100
1/2"	60		1/2"		100		#16	75	50-85
3/8"	39	20-55	3/8"		85-100		#30	43	25-60
#4	4	0-10	#4		10-30		#50	15	10-30
#8	0.7	0-5	#8		0-10		#100	4	2-10
#200	0.04		#200				#200	1.3	0-3
SSD Specific (Gravity:	2.728	SSD Specif	fic Gravity:	_		SSD Spe	cific Gravity:	2.706
Absorption %:		0.60	Absorption	%:			Absorptio		1.30
Dry-Rodded U	nit Wt:		Dry-Roddeo	d Unit Wt:			Fineness	Modulus:	2.68
		Batch	Weights - Po	ounds or (Ounces Per		Batch	n Volumes	
Component		Sack weights	s no longer used	(Cubic Yard		Ft ³ pe	r Cubic Yard	
Cement		"			600.0			3.053	
Mixing Water		"			247.0			3.958	
Coarse Aggreg	gate	"			1820.0	SSD		10.692	

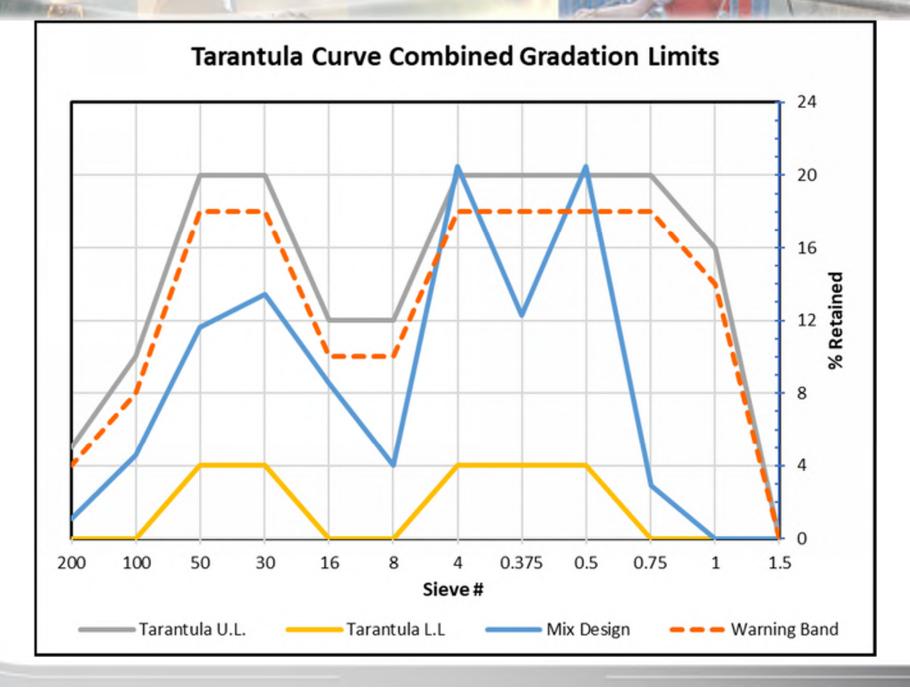
		Batch Weights - Pou	inds or Ounces Per	Batch Volumes	
Component		Sack weights no longer used	Cubic Yard	Ft ³ per Cubic Yard	
Cement		"	600.0	3.053	
Mixing Water		"	247.0	3.958	
Coarse Aggregate		"	1820.0 SSD	10.692	
Inter. Aggregate		II	0.0 SSD	0	
Fine Aggregate		U U	1290.0 SSD	7.640	Admixture SpG
Master Polyheed 997		U U	40.00 fl oz	0.042	1.28
MasterAir AE 90		u	2.00 fl oz	0.002	1.01
		"	fl oz		
		U U	fl oz		
Air %:	6.0	"		1.620	Theoretical Max SpG
Totals:		u a a a a a a a a a a a a a a a a a a a	3960.5 lbs.	27.006	156.01

4.1.1. Flowable - Two Aggregate Blend

Mix Design (or batch) ID: Flowable Class AA Mix Enter Aggregate SSD Weights under BLEND SUPPLIED below. Note: Blue font is data entry, Red font indicates a calculation cell Date: 6/1/2023

		BLEND SUPPLIED							
Aggregate Sizes:	1.5"	1"	3/4"	Pea	Pea - Sand	F. Sand	Totals		
SSD Weights (lbs)	0	0	1,820	0	1,290	0	3,110		
Mass % Each Size	0.0%	0.0%	58.5%	0.0%	41.5%	0.0%	100.0%		

SIEVE	SIEVE SIZE		RRENT GF	RADATION	<u>S, PERCE</u>	NT PASS	NG	Combined	Combined
(us)	(mm)	1.5"	1"	3/4"	Pea	C. Sand	F. Sand	% Passing	% Retained
2"	50	100	100	100	100	100	100	100.0	0.0
1.5"	37.5	100	100	100	100	100	100	100.0	0.0
1"	25	0	0	100	100	100	100	100.0	0.0
3/4"	19	0	0	95	100	100	100	97.1	2.9
1/2"	12.5	0	0	60	100	100	100	76.6	20.5
3/8"	9.5	*	0	39	0	100	100	64.3	12.3
#4	4.75	*	0	4	0	100	0	43.8	20.5
#8	2.36	*	0	0.7	0	95	0	39.8	4.0
#16	1.18	*	*	0.3	0	75	0	31.3	8.5
#30	0.3	*	*	*	0	43	0	17.8	13.4
#50	0.3	*	*	*	*	15	0	6.2	11.6
#100	0.15	*	*	*	*	4	0	1.7	4.6
#200	0.075	0	0	0.04	0	1.3	0	0.6	1.1
Pan	0.000								0.6
	•							Total:	100.0


4.1.1. Flowable Tarantula & Sand Limits

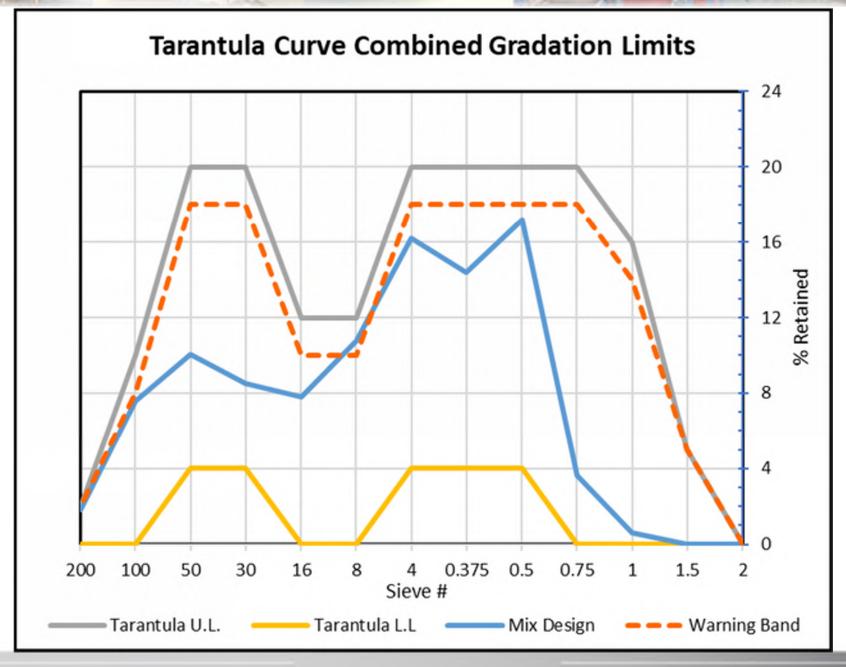
Tarantula Lir	nits - Flowable		1		
Sieve Sizes	Tarantula U.L.	Tarantula L.L	Warning Band	Combined % Passing	Combined % Retained
1.5"	0	0	0	100.0	0.0
1"	16	0	14	100.0	0.0
3/4"	20	0	18	97.1	2.9
1/2"	20	4	18	76.6	<mark>20.5</mark>
3/8"	20	4	18	64.3	12.3
#4	20	4	18	43.8	<mark>20.5</mark>
#8	12	0	10	39.8	4.0
#16	12	0	10	31.3	8.5
#30	20	4	18	17.8	13.4
#50	20	4	18	6.2	11.6
#100	10	0	8	1.7	4.6
#200	2	0	2	0.6	1.1

Concrete Sand Limits - Flowable	Coarse/Fine Percentage	Within Limits?
Coarse Sand % (#8-30) =	26.0	Yes
Minimum is 20%		
Fine Sand % (#30-200) =	30.7	Yes
Allowable range is 25-40%		

Flowable Tarantula Curve w/Limits

4.1.2. Paving - Six Aggregate Blend

Activity)			1. A.			1000	100	100	Della Participation
Mix Design	or batch ID:	Paving Exar	nple xyz				Date:	6/1/2023	
Enter Aggre	gate SSD We	ights under l	BLEND SUPF	PLIED below.					
Note: Blue	font is data e	ntry, Red fo	ont indicates	a calculatio	n cell				
			В	BLEND S	UPPLIE	D			
Aggregat	te Sizes:	1.5"	1"	3/4"	Pea	Pea - Sand	F. Sand	Totals	
SSD We	ights (lbs)	1,000	1,200	11,360	4,060	5,410	4,250	27,280	
Mass %	Each Size	3.7%	4.4%	41.6%	14.9%	19.8%	15.6%	100.0%	
SIEVE	E SIZE	CUI	RRENTGR	RADATION	S, PERCE	NT PASS	I N G	Combined	Combined
(us)	(mm)	1.5"	1"	3/4"	Pea	C. Sand	F. Sand	% Passing	% Retained
2"	50	100	100	100	100	100	100	100.0	0.0
1.5"	37.5	100	100	100	100	100	100	100.0	0.0
1"	25	85	99	100	100	100	100	99.4	0.6
3/4"	19	50	84	96	100	100	100	95.8	3.6
1/2"	12.5	10	48	62	100	100	100	78.6	17.2
3/8"	9.5	*	30	32	95	100	100	64.2	14.4
#4	4.75	*	5	12	52	99	99	48.0	16.2
#8	2.36	*	2	3	12	95	98	37.2	10.8
#16	1.18	*	*	2	2	72	90	29.4	7.8
#30	0.3	*	*	*	1	45	76	20.9	8.5
#50	0.3	*	*	*	*	14	52	10.9	10.0
#100	0.15	*	*	*	*	4	16	3.3	7.6
#200	0.075	0	0.2	0.5	0.7	1.1	6	1.5	1.8
Pan	0.000								1.5
								Total:	100.0


4.1.2. Slip-Formed (Paving) Concrete Tarantula & Sand Limits

Tarantula Li	mits: Paving C	oncrete			
Sieve Sizes	Tarantula U.L.	Tarantula L.L	Warning Band	Combined % Passing	Combined % Retained
2"	0	0	0	100.0	0.0
1.5"	5	0	5	100.0	0.0
1"	16	0	14	99.4	0.6
3/4"	20	0	18	95.8	3.6
1/2"	20	4	18	78.6	17.2
3/8"	20	4	18	64.2	14.4
#4	20	4	18	48.0	16.2
#8	12	0	10	37.2	10.8
#16	12	0	10	29.4	7.8
#30	20	4	18	20.9	8.5
#50	20	4	18	10.9	10.0
#100	10	0	8	3.3	7.6
#200	2	0	2	1.5	1.8

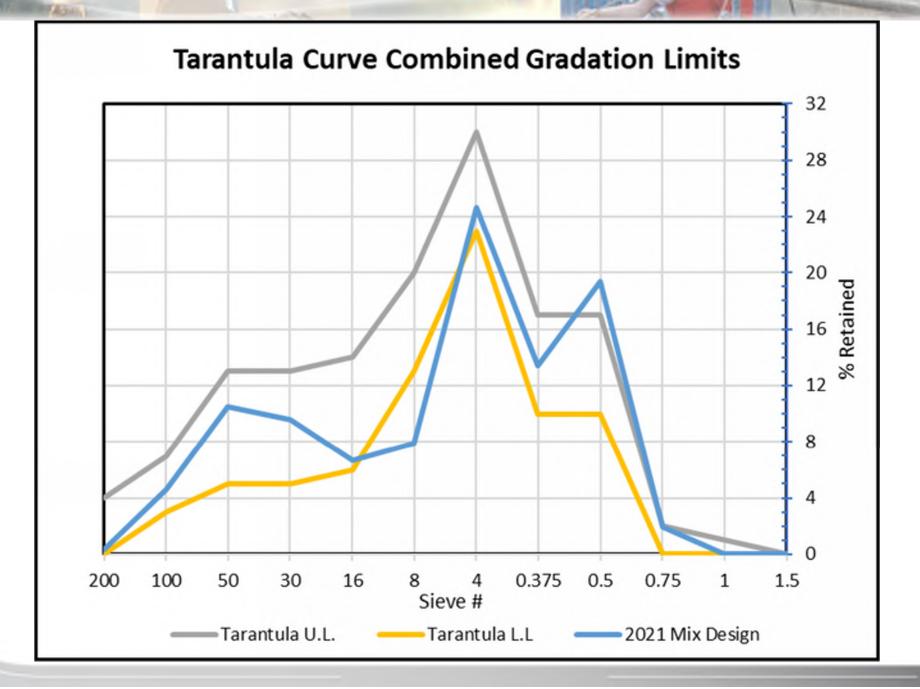
Concrete Sand Limits - Paving	Coarse/Fine	
Concrete Sand Linnts - Paving	Percentage	Within Limits?
Coarse Sand % (#8-30) =	27.1	Yes
Minimum is 15%		
Fine Sand % (#30-200) =	28.0	Yes
Allowable range is 24-34%		

4.1.2 Paving - Tarantula Gradation Limits

4.1.3. SCC - Three Aggregate Blend

Conceptual de la concep	ALC: NO DE LA COMPANY		and the ball			100	7.21	Contraction of the local division of the loc	And in case of the local division of the loc
			В	LEND S	UPPLIE	D			
Aggregat	e Sizes:	1.5"	1"	3/4"	Pea	Pea - Sand	F. Sand	Totals	
SSD We	ights (lbs)	0	0	1,462	485	1,071	0	3,018	
Mass %	Each Size	0.0%	0.0%	48.4%	16.1%	35.5%	0.0%	100.0%	
SIEVE	E SIZE	CUF	RENTGR	ADATION	S, PERCE	NT PASS	ING	Combined	Combined
(us)	(mm)	1.5"	1"	3/4"	Pea	C. Sand	F. Sand	% Passing	% Retained
1.5"	37.5	100	100	100	100	100	100	100.0	0.0
1"	25	0	0	100	100	100	100	100.0	0.0
3/4"	19	0	0	96	100	100	100	98.1	1.9
1/2"	12.5	0	0	56	100	100	100	78.7	19.4
3/8"	9.5	*	0	29	98	100	100	65.3	13.4
#4	4.75	*	0	4	20	100	0	40.6	24.6
#8	2.36	*	0	1.7	2.1	89	0	32.7	7.9
#16	1.18	*	*	1.3	1.5	71	0	26.1	6.7
#30	0.3	*	*	*	1.1	46	0	16.5	9.6
#50	0.3	*	*	*	*	17	0	6.0	10.5
#100	0.15	*	*	*	*	4	0	1.4	4.6
#200	0.075	0	0	0.9	0.7	1.5	0	1.1	0.3
Pan	0.000								1.1
								Total:	100.0

4.1.3. SCC Tarantula & Sand Limits

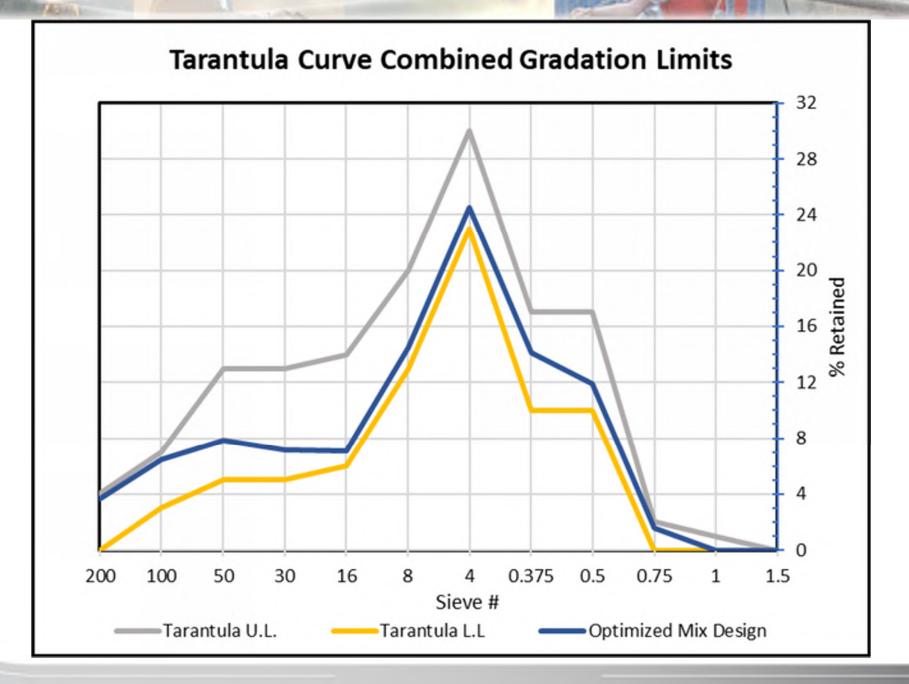

Tarantula Li	mits: Self-Cons	crete		
Sieve Size	Tarantula U.L.	Tarantula L.L	Combined % Passing	Combined % Retained
1.5"	0	0	100.0	0.0
1"	1	0	100.0	0.0
3/4"	2	0	98.1	1.9
1/2"	17	10	78.7	19.4
3/8"	17	10	65.3	13.4
#4	30	23	40.6	24.6
#8	20	13	32.7	7.9
#16	14	6	26.1	6.7
#30	13	5	16.5	9.6
#50	13	5	6.0	10.5
#100	7	3	1.4	4.6
#200	4	0	1.1	0.3

SCC Concrete Sand Limits:	Coarse/Fine Percentage	Within Limits?
Coarse Sand % (#8-30) =	24.1	Yes
Minimum is 20%		
Fine Sand % (#30-200) =	24.99	No
Allowable range is 25-40%		

Self-Consolidating Tarantula Limits

4.1.3. SCC - Four Aggregate Blend

		BLEND SUPPLIED							
Aggregat	Aggregate Sizes:		1"	3/4"	Pea	Pea - Sand	F. Sand	Totals	
SSD We	eights (lbs)	0	0	1,162	386	755	715	3,018	
Mass %	Each Size	0.0%	0.0%	38.5%	12.8%	25.0%	23.7%	100.0%	
SIEVE	E SIZE	CUF	RENTGR	ADATION	S, PERCE	ENT PASS	ING	Combined	Combined
(us)	(mm)	1.5"	1"	3/4"	Pea	C. Sand	F. Sand	% Passing	% Retained
1.5"	37.5	100	100	100	100	100	100	100.0	0.0
1"	25	0	0	100	100	100	100	100.0	0.0
3/4"	19	0	0	96	100	100	100	98.5	1.5
1/2"	12.5	0	0	65	100	100	100	86.5	11.9
3/8"	9.5	*	0	29	98	100	100	72.4	14.1
#4	4.75	*	0	4	20	85	95	47.9	24.5
#8	2.36	*	0	1.7	2.1	54	80	33.4	14.5
#16	1.18	*	*	1.3	1.5	38	68	26.3	7.1
#30	0.3	*	*	*	1.1	24	55	19.2	7.1
#50	0.3	*	*	*	*	12	35	11.3	7.9
#100	0.15	*	*	*	*	5	15	4.8	6.5
#200	0.075	0	0	0.9	0.7	1.1	2	1.2	3.6
Pan	0.000								1.2
and the state								Total:	100.0


4.1.3. SCC Tarantula & Sand Limits

Tarantula	Limits - SCC			
Sieve Size	Tarantula U.L.	Tarantula L.L	Combined % Passing	Combined % Retained
1.5"	0	0	100.0	0.0
1"	1	0	100.0	0.0
3/4"	2	0	98.5	1.5
1/2"	17	10	86.5	11.9
3/8"	17	10	72.4	14.1
#4	30	23	47.9	24.5
#8	20	13	33.4	14.5
#16	14	6	26.3	7.1
#30	13	5	19.2	7.1
#50	13	5	11.3	7.9
#100	7	3	4.8	6.5
#200	4	0	1.2	3.6

Concrete Sand Limits	- SCC	Coarse/Fine Percentage	Within Limits?
Coarse Sand % (#	8-30) =	28.7	Yes
Minimum is 20%			
Fine Sand % (#30-	-200) =	25.1	Yes
Allowable range is 25-	-40%		

Self-Consolidating Tarantula Limits

Additional Aggregate Tests

4.2. Determine duplicate specific gravities (bulk, bulk SSD, apparent) and absorption values of each fine & coarse aggregate in accordance with AASHTO T 84 and T 85 respectively. Perform additional testing if duplicate values do not agree within 1s Single operator precision. The average of the duplicate test values shall be used in the mix design. (For "Example Calculations" see Appendix D worksheets for "Duplicate Coarse Aggregate Specific Gravities and Absorption" and "Duplicate Fine Aggregate Specific Gravities and Absorption")

4.3. Perform Sodium Sulfate Soundness testing on both coarse (retained on #4 sieve) and fine (passing #4 sieve) aggregates or on coarse and fine fractions of the combined aggregate in accordance with AASHTO T 104. Maximum loss for coarse aggregate is 12% for sodium sulfate and 18% for magnesium sulfate. Maximum allowable loss for fine aggregate is 10% for sodium sulfate and 12% for magnesium sulfate.

4.4. Limit flat or elongated coarse aggregate to a maximum of 15% at a ratio of 1:3 according to ASTM 4791.

4.5. Limits for deleterious materials must conform to AASHTO M 80, Table 2, Class A, for coarse aggregates and AASHTO M 6, Table 2, Class A, for fine aggregates.

Duplicate CA SpG

AASHTO T 85 (ASTM C127) Duplicate Relative Density, (SpG) and Absorption of Coarse Aggregate

Sample Preparation:

Use AASHTO T 85, Section 7.3. table for sample size. If more than 15% retained on 1-1/2" sieve, test this portion separately

from the smaller material. Multiple fractions may be used. Sieve the reduced sample over a #4 sieve and wash

all dust from the sample.

Procedure:

1. Dry to constant mass at $110 \pm 5^{\circ}$ C. Cool at room temperature for 1-3 hrs. or until sample can be handled

comfortably.

2. Completely submerge sample in water at room temperature and soak for 15-19 hrs. (ASTM 24 ± 4 hrs.)

Note: AASHTO allows initial drying to be eliminated if aggregate will be used in concrete mixtures in it's

naturally wet condition. The 15 hour soaking period may be eliminated if surfaces of the sample have been kept continuously wet until the test was begun.

Note: Report Sp.G results to 0.001 (AASHTO) 0.01 (ASTM). Check that SSD SpG of Trials 1 & 2 agree within 1s, 0.007

	1	\mathcal{O}	-
Description:	Trial 1	Trial 2	Average
Oven dry mass in air (g)	2869.0	2892.6	
SSD mass in air (g)	2907.8	2933.5	
Mass in water (g)	1820.8	1836.2	
Temperature ©	23.4	23	
Bulk Sp.G (oven dry)	2.639	2.636	2.638
SSD Sp.G	2.675	2.673	2.674
Apparent Sp.G	2.737	2.738	2.738
% Absorption	1.35%	1.41%	1.38%
• • • • •	Oven dry mass in air (g)SSD mass in air (g)Mass in water (g)Temperature ©Bulk Sp.G (oven dry)SSD Sp.GApparent Sp.G	Oven dry mass in air (g)2869.0SSD mass in air (g)2907.8Mass in water (g)1820.8Temperature ©23.4Bulk Sp.G (oven dry)2.639SSD Sp.G2.675Apparent Sp.G2.737	Description: Trial 1 Trial 2 Oven dry mass in air (g) 2869.0 2892.6 SSD mass in air (g) 2907.8 2933.5 Mass in water (g) 1820.8 1836.2 Temperature © 23.4 23 Bulk Sp.G (oven dry) 2.639 2.636 SSD Sp.G 2.675 2.673 Apparent Sp.G 2.737 2.738

Duplicate FA SpG

AASHTO T 84 (ASTM C128) Duplicate Relative Density, (SpG) and Absorption of Fine Aggregate

Sample Preparation:

1. Obtain 2 each, 1kg samples in accordance with T 2 (D 75) and T 248 (C 702) for duplicate tests.

2. Dry to constant mass then add a minimum of 6% moisture after cooling. Allow sample to stand 15-19 hrs.

$(24 \pm 4 \text{ hrs. for ASTM}).$

a) Initial drying is optional if aggregates will be used for concrete mixtures, and are still in their moist states

Note: Report Sp.G results to 0.001 (AASHTO) 0.01 (ASTM). Check that SSD SpG of Trials 1 & 2 agree within 1s, 0.0095

Formulas:	Description of data or calculation:	Trial 1	Trial 2	Average
В	Pyc+ Distilled Water	660.7	660.7	
	(from calib) Ave M pw, c (g)			
S	SSD Soil Mass	500.1	500.8	
С	Pyc + Distilled Water + Agg	973.7	974.5	
Т	Temperature $(23.0 \pm 2.0^{\circ}C)$	23.0	22.7	
А	Oven Dry Mass	493.4	495.3	
A/(B+S-C)	Bulk Sp.G. (Oven Dry)	2.637	2.649	2.643
S/(B+S-C)	SSD Sp.G.	2.673	2.678	2.675
A/(B+A-C)	Apparent Sp.G.	2.735	2.729	2.732
100(S-A)/A	Absorption	1.36%	1.11%	1.23%

5. Cementitious Materials

 Cementitious materials acceptable for concrete include, but are not limited to; Portland Cement, Calcium Sulfoaluminate Cement, Class C and F fly ash, microsilica, nano-silica, natural pozzolans, ground granulated blast furnace slag (GGBF), silica fume, and meta-kaolin.

6. Admixtures

 Admixture materials acceptable for concrete include, but are not limited to water-reducers, surfactants, viscosity modifiers, air-entrainment agents, crack reducers, shrinkage reducers, accelerators, retarders, surface sealers, hardeners and finishing aides.

7. Fibers

• Fiber materials acceptable for reinforcement, shrinkage and crack control in concrete include, but are not limited to; steel, stainless steel, synthetic, and alkali-resistant cellulose fibers.

8. Internal Curing

• Internal curing may be used to increase tensile and compressive strength, reduce internal stresses and reduce shrinkage in concrete. Internal curing materials include, but are not limited to; expanded shale, clay or slate fine aggregates, alkali-resistant cellulose, super-absorbent polymers, multi-crystalline enhancer, specialty admixtures, and naturally occurring aggregates of volcanic origin meeting ASTM C1761.

9. Concrete Proportions by ACI 211.1 Chapter 6 – Procedure, 6.3.1 – 6.3.9

- 1. Select slump appropriate for the type of construction.
- Select maximum size of aggregate so concrete can be placed without excessive segregation or voids.
 2b. (Not in ACI) Blend available aggregates to optimize the combined gradation as evaluated by gradation guidelines in section 4.1.1., 4.1.2 or section 4.1.3 for flowable, slip-formed, or self-consolidating concrete, respectively.
- 3. Estimate mixing water and entrained-air content for exposure class, selected slump and maximum aggregate size.
- 4. Select water-cementitious materials ratio needed to provide required durability and compressive strength.
- 5. Calculate the cementitious materials content based on steps 3-4 above.
- 6. Estimate coarse aggregate content using ACI 211.1 Table 6.3.6 Volume of coarse aggregate per volume of concrete.
- 7. Calculate fine aggregate content. At the end of step 7 all ingredients of the concrete have been estimated except the fine aggregate. The fine aggregate content is calculated by difference.
- 8. Adjust for aggregate moisture.
- 9. Trial batch adjustments for air content, workability, freedom from segregation, finishing properties.

Example ACI Mix Design

- Goal: New Mix Design
 - 3-4" slump
 - 6% Entrained-air for Extreme Exposure
 - $f'_c = 4000psi, (f'_{cr} = 5200psi)$

1. Recommended Slump = 3-4"

Table 6.3.1 — Recommended slumps for various types of construction*

	Slump, in.			
Types of construction	Maximum ¹	Minimum		
Reinforced foundation walls and footings	3			
Plain footings, caissons, and substructure walls	3	Ĺ		
Beams and reinforced walls	4			
Building columns	4	1		
Pavements and slabs	3	1		
Mass concrete	2			

2. Nominal Maximum Aggregate Size = 3/4 in.

- 1. Slump = 3-4" (ACI Table 6.3.1)
- 2. Maximum Aggregate Size = $\frac{34''}{6.3.2}$
- 3. Estimate Mixing Water = 305 lbs./cu. yd., and Air, Moderate exposure, Air = 5% (Table 6.3.3)
- 4. Select w/c ratio for 4000 psi compressive strength, air entrained, w/c = 0.48 from Table 6.3.4(a)
- 5. Calculate cement content = 305/0.48 = 635 lbs. (6.3.5)
- 6. Estimate CA content (Sand FM 2.94) = 0.61 (Table 6.3.6)
- 7. Calculate Sand content by difference
 27.0 ft³ (all other volumes) = Sand volume (6.3.7)
- 8. Adjustments for aggregate moisture (6.3.8)
- 9. Trial batch adjustments (6.3.9)

3. Estimate of Mixing Water & Air

Table 6.3.3 — Approximate mixing water and air content requirements for different slumps and nominal maximum sizes of aggregates

Water, lb/yd' of conci		aiteeteen aan de aan de state de la de	and the second	A STATE OF CONTRACTOR OF CONTRACTOR		· · · · · · · · · · · · · · · · · · ·	n an the second s	
Slump, in.	1 in.*	11/2 in.*	¾ in.*	1 in.*	1-1/2 in.*	2 in.**	3 in.'*	6 in.**
	Non-a	air-entra	ined col	icrete				
 1 to 2 3 to 4 6 to 7 More than 7* Approximate amount of entrapped air in non-air-entrained concrete, percent 		335 365 385 	315 340 360 2	300 325 340 1.5	275 300 315 	260 285 300 	220 245 270 0.3	190 210
	Air	-entrain	ed conci	cte		·····		·····
1 to 2 3 to 4 6 to 7	305 340 365	295 325 345	280 - 305 325	270 295 310	250 275 290	240 265 280	205 225 260	180 200
More than 7* Recommended averages' total air content, percent for level of exposure:		-	_		_	-	-	_
Mild exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5**."	1.0**
Moderate exposure Severe exposure ¹¹	6.0 7.5	5.5 7.0	5.0 6.0	4.5 6.0	4.5 5.5	4.0 5.0	3.5**." 4.5**."	3.0**." 4.0**."

3. Mixing Water = 305#, Air = 6%

- 1. Slump = 4" (ACI Table 6.3.1)
- 2. Maximum Aggregate Size = $\frac{3}{4}$ " (6.3.2)
- Estimate Mixing Water = 305 lbs./cu. yd., and Air, Severe exposure, Air = 6% (Table 6.3.3)
- 4. Select w/c ratio for 4000 psi compressive strength, air entrained, w/c = 0.48 from Table 6.3.4(a)
- 5. Calculate cement content = 305/0.48 = 635 lbs. (6.3.5)
- 6. Estimate CA content (Sand FM 2.94) = 0.61 (Table 6.3.6)
- 7. Calculate Sand content by difference
 27.0 ft³ (all other volumes) = Sand volume (6.3.7)
- 8. Adjustments for aggregate moisture (6.3.8)
- 9. Trial batch adjustments (6.3.9)

4. Select w/c Ratio for 4000 psi w/ Air

Table 6.3.4(a) — Relationship between watercement or water-cementitious materials ratio and compressive strength of concrete

	Water-cement ratio, by weight					
Compressive strength at 28 days, psi*	Non-air-entrained concrete	Air-entrained concrete				
6000 5000 (4000)	0.41 0.48 0.57	0.40				
3000 2000	0.68 0.82	0.59 0.74				

4. Select w/c Ratio = 0.48

- 1. Slump = 4" (ACI Table 6.3.1)
- 2. Maximum Aggregate Size = $\frac{3}{4}$ " (6.3.2)
- 3. Estimate Mixing Water = 305 lbs./cu. yd., and Air, Moderate exposure, Air = 5% (Table 6.3.3)
- Select w/c ratio for 4000 psi compressive strength, air entrained, w/c = 0.48 from Table 6.3.4(a)
- 5. Calculate cement content = 305/0.48 = 635 lbs. (6.3.5)
- 6. Estimate CA content (Sand FM 2.94) = 0.61 (Table 6.3.6)
- 7. Calculate Sand content by difference
 27.0 ft³ (all other volumes) = Sand volume (6.3.7)
- 8. Adjustments for aggregate moisture (6.3.8)
- 9. Trial batch adjustments (6.3.9)

5. Calculate Cement Weight = 635 lbs

- 1. Slump = 4" (ACI Table 6.3.1)
- 2. Maximum Aggregate Size = $\frac{3}{4}$ " (6.3.2)
- 3. Estimate Mixing Water = 305 lbs./cu. yd., and Air, Moderate exposure, Air = 5% (Table 6.3.3)
- 4. Select w/c ratio for 4000 psi compressive strength, air entrained, w/c = 0.48 from Table 6.3.4(a)
- 5. Calculate cement weight = 305 lbs. water/0.48 = 635 lbs. (6.3.5)
- 6. Estimate CA content (Sand FM 2.94) = 0.61 (Table 6.3.6)
- 7. Calculate Sand content by difference
 27.0 ft³ (all other volumes) = Sand volume (6.3.7)
- 8. Adjustments for aggregate moisture (6.3.8)
- 9. Trial batch adjustments (6.3.9)

6. Estimate Coarse Aggregate Content

- 1. Slump = 4" (ACI Table 6.3.1)
- 2. Maximum Aggregate Size = $\frac{3}{4}$ " (6.3.2)
- 3. Estimate Mixing Water = 305 lbs./cu. yd., and Air, Moderate exposure, Air = 5% (Table 6.3.3)
- 4. Select w/c ratio for 4000 psi compressive strength, air entrained, w/c = 0.48 from Table 6.3.4(a)
- 5. Calculate cement weight = 305 lbs. water/0.48 = 635 lbs. (6.3.5)
- 6. Estimate CA content (Sand FM 2.94) = 0.61 (Table 6.3.6)
- 7. Calculate Sand content by difference (6.3.7)
- 8. Adjustments for aggregate moisture (6.3.8)
- 9. Trial batch adjustments (6.3.9)

Fine Aggregate Gradation

AA	SHTO Gr.#	M6						
	Fine Aggregate							
Sieve	% Pass	Specs						
3/8"	100	100						
#4	100	95-100						
#8	84	80-100						
#16	60	50-85						
#30	38	25-60						
#50	18	10-30						
#100	6	2-10						
#200	2.8	0-3						

Fineness Modulus Calculation

Fineness Modulus (FM) – An empirical factor obtained by adding the total percentages of a sample of fine aggregate retained on each of the following sieves, that sum divided by 100. Sieve numbers 4, 8, 16, 30, 50, 100

For example:	Sieve Size	% Passing	% Retained
	#4	100	0
	#8	84	16
	#16	60	40
	#30	38	62
	#50	18	82
	#100	6	94
		S	um = 294

Fineness Modulus calculation: 294 / 100 = 2.94

Table 6.3.6 — Volume of coarse aggregate per unit of volume of concrete

Nominal maximum size	agg	Volume of oven-dry-rodded coarse aggregate [*] per unit volume of concrete for different fineness moduli of fine aggregate' 2.94						
of aggregate, in.	2.40	2.60	2.80	3.00				
¥	0.50	0.48	0.46	0.44				
1/2	0.59	0.57	0.55	0.53				
	0.66	0.64	0.62).610.60				
	0.71	0.69	0.67	0.65				
1 1/2	0.75	0.73	0.71	0.69				
2	0.78	0.76	0.74	0.72				
3	0.82	0.80	0.78	0.76				
6	0.87	0.85	0.83	0.81				

6b. Bulk Density and Voids in Aggregate

Formula:	Description:		1
G	Wt. of Agg. + T (lb)		32.984
т	Wt. Tare (lb):		7.718
V	Volume(ft ³):		0.248
M = (G-T)/V	Bulk Density Dry (lb/ft³) (M)	=25.266 lb / 0.248 ft ³ =	102
Α	% Absorption		1.38
M[1+(A/100)]	Bulk Density at SSD (lb/ft³) (Mssd)		103
S	Bulk SpG (dry basis)		2.754
W	Water density 62.3 Ib/ft ³)		62.3
100[(S*W)-M)/(S*W)]	% Void Content		40.6%

6. CA Bulk Volume Calculation

- Coarse Aggregate Unit volume is 0.61 yd³
- 0.61 yd³ (27 ft³/yd³) = 16.47 ft³ Coarse Aggregate Bulk
 Volume

 $16.47 \text{ ft}^3 (102 \text{ lbs/ft}^3) = 1680 \text{ lbs Dry CA}.$

1680 lbs Dry CA is 37.8% of the concrete volume.
 1680 lb / 2.638 / 62.4 pcf = 10.21 ft³ (or 0.378 cy)

7. Calculate Sand Content by difference

- 1. Slump = 4" (ACI Table 6.3.1)
- 2. Maximum Aggregate Size = $\frac{3}{4}$ " (6.3.2)
- 3. Estimate Mixing Water = 305 lbs./cu. yd., and Air, Moderate exposure, Air = 5% (Table 6.3.3)
- 4. Select w/c ratio for 4000 psi compressive strength, air entrained, w/c = 0.48 from Table 6.3.4(a)
- 5. Calculate cement content = 305/0.48 = 635 lbs. (6.3.5)
- 6. Estimate CA content (Sand FM 2.94) = 0.61 (Table 6.3.6)
- 7. Calculate Sand content by difference
 27.0 ft³ (all other volumes) = Sand volume (6.3.7)
- 8. Adjustments for aggregate moisture (6.3.8)
- 9. Trial batch adjustments (6.3.9)

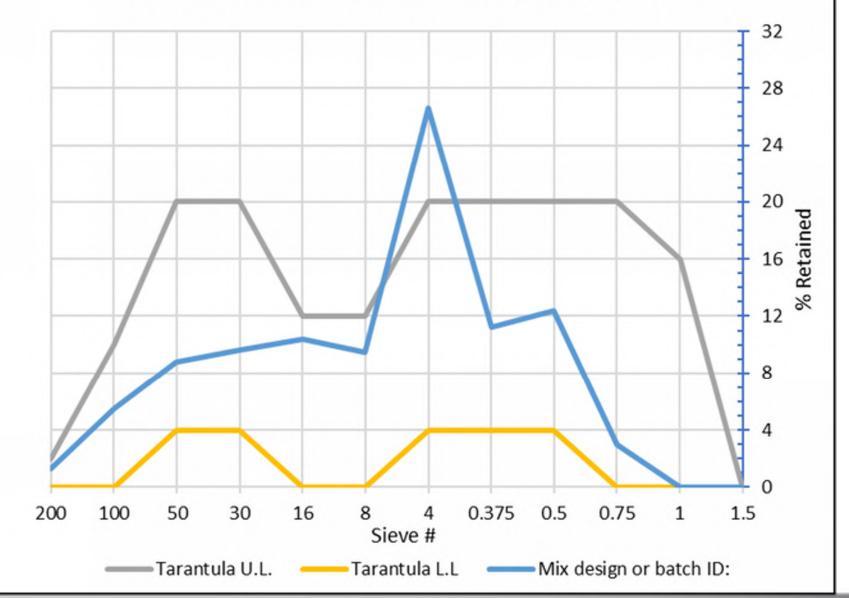
7. Calculate Sand Content by difference

- Volume of water = $305 \text{ lb} / 62.4 \text{ lb/ft}^3 = 4.89 \text{ ft}^3$
- Volume of cement = 635 lb / (3.15 x 62.4 lb/ft³) = 3.23 ft³
- Volume of Dry CA = 1680 lb / 2.638 / 62.4 pcf = 10.21 ft³
- Volume of Air = 6% x 27 ft³ =
- Subtotal =
- Sand Volume = 27.00 19.95 = 7.05 ft³
- Required weight of Dry sand:
 7.05 ft³ (2.643)(62.4 pcf) = 1163 lb

1.62 ft³

19.95 ft³

Flowable Combined Gradation


			B	LEND S	UPPLIE	D			
Aggregat	te Sizes:	1.5"	1"	3/4"	Pea	Pea - Sand	F. Sand	Totals	
SSD We	eights (lbs)	0	0	1,680	0	0	1,164	2,844	
Mass %	Each Size	0.0%	0.0%	59.1%	0.0%	0.0%	40.9%	100.0%	
Enter Aggre	egate Gradat	tions:							
SIEVE	E SIZE	C U F	RENTGR	ADATION	S, PERCE	ENT PASS	ING	Combined	Combined
(us)	(mm)	1.5"	1"	3/4"	Pea	C. Sand	F. Sand	% Passing	% Retained
1.5"	37.5	100	100	100	100	100	100	100.0	0.0
1.0"	25	0	0	100	100	100	100	100.0	0.0
3/4"	19	0	0	95	100	100	100	97.0	3.0
1/2"	12.5	0	0	74	100	100	100	84.6	12.4
3/8"	9.5	*	0	55	0	100	100	73.4	11.2
#4	4.75	*	0	10	0	0	100	46.8	26.6
#8	2.36	*	0	5	0	0	84	37.3	9.5
#16	1.18	*	*	4	0	0	60	26.9	10.4
#30	0.60	*	*	3	0	0	38	17.3	9.6
#50	0.30	*	*	2	0	0	18	8.5	8.8
#100	0.15	*	*	1	0	0	6	3.0	5.5
#200	0.075	0	0	1.0	0	0	2.8	1.7	1.3
Pan	0.000								1.7
Contract								Total:	100.0

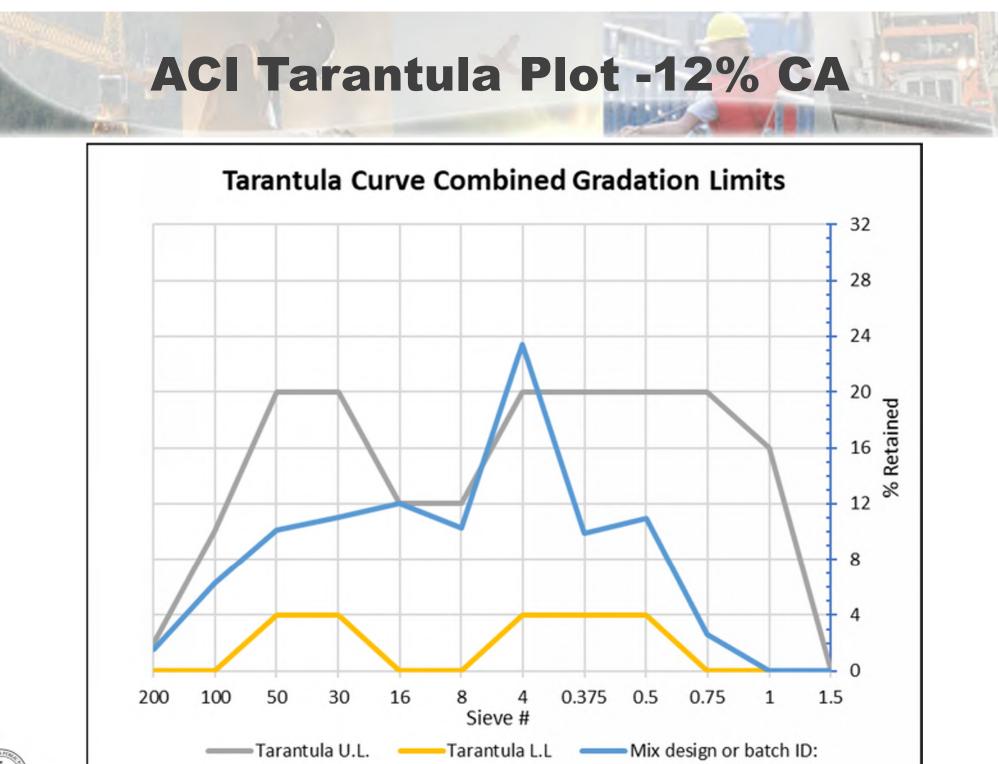
ACI Class A Tarantula Plot

Acres.

Tarantula Curve Combined Gradation Limits

7. Re-Calculate Sand Content-12% CA

- Volume of water = 305 lb / 62.4 lb/ft³ = 4.89 ft³
- Volume of cement = 635 lb / (3.15 x 62.4 lb/ft³) = 3.23 ft³
- Volume of dry CA = 1478 lb / 2.638 / 62.4 pcf = 8.98 ft^3
- Volume of Air = 6% x 27 ft³ =
- Subtotal =
- Sand Volume = 27.00 18.72 = 8.28 ft³
- Required weight of dry sand:
 8.28 ft³ (2.643)(62.4 pcf) = 1366 lb


1.62 ft³

18.72 ft³

Flowable Combined Gradation

			В	LEND S	UPPLIE	D			
Aggregat	e Sizes:	1.5"	1"	3/4"	Pea	Pea - Sand	F. Sand	Totals	
SSD We	ights (lbs)	0	0	1,478	0	0	1,366	2,844	
Mass %	Each Size	0.0%	0.0%	52.0%	0.0%	0.0%	48.0%	100.0%	
Enter Aggre	egate Grada	tions:							
SIEVE	E SIZE	CUF	RRENTGR	ADATION	S, PERCE	NT PASS	I N G	Combined	Combined
(us)	(mm)	1.5"	1"	3/4"	Pea	C. Sand	F. Sand	% Passing	% Retained
1.5"	37.5	100	100	100	100	100	100	100.0	0.0
1.0"	25	0	0	100	100	100	100	100.0	0.0
3/4"	19	0	0	95	100	100	100	97.4	2.6
1/2"	12.5	0	0	74	100	100	100	86.5	10.9
3/8"	9.5	*	0	55	0	100	100	76.6	9.9
#4	4.75	*	0	10	0	0	100	53.2	23.4
#8	2.36	*	0	5	0	0	84	42.9	10.3
#16	1.18	*	*	4	0	0	60	30.9	12.0
#30	0.60	*	*	3	0	0	38	19.8	11.1
#50	0.30	*	*	2	0	0	18	9.7	10.1
#100	0.15	*	*	1	0	0	6	3.4	6.3
#200	0.075	0	0	1.0	0	0	2.8	1.9	1.5
Pan	0.000								1.9
and the second second								Total:	100.0

ACI Tarantula Plot Tarantula Curve Combined Gradation Limits % Retained 0.375 0.5 0.75 1.5 Sieve

8. Adjustments for aggregate moisture

- 1. Slump = 4" (ACI Table 6.3.1)
- 2. Maximum Aggregate Size = $\frac{3}{4}$ " (6.3.2)
- 3. Estimate Mixing Water = 305 lbs./cu. yd., and Air, Moderate exposure, Air = 5% (Table 6.3.3)
- 4. Select w/c ratio for 4000 psi compressive strength, air entrained, w/c = 0.48 from Table 6.3.4(a)
- 5. Calculate cement content = 305/0.48 = 635 lbs. (6.3.5)
- 6. Estimate CA content (Sand FM 2.94) = 0.61 (Table 6.3.6)
- Calculate Sand content by difference
 27.0 ft³ (all other volumes) = Sand volume (6.3.7)
- 8. Adjustments for aggregate moisture (6.3.8)
- 9. Trial batch adjustments (6.3.9 to 7.3.10)

Mix Design Spreadsheet

Mix Desig	gn Volume	etric Data	- 6.0 sk	Trial (1)							
Note: Blu	e Font =	Data Entr	y, Red I	Font = Ca	Iculation	Date:					
Type of Cor	ncrete:	4000 psi	6.0% Aii	6.0 sack	Calc	ulated by:					
Project Nar	me:	Slabs - Ex	posed to	Freeze/Tha	aw Ch	ecked by:					
Mix Design	Criteria:					Aggr	egate Mois	sture (As R	eceived):		
Maximum N	ominal Aggr	egate Size (inches):	3/4				CA	FA		
Cement (Mi	nimum weig	ht per cubic	yard):	520 lbs			Tare	1012.1	1238.8		
Cement Mfg	ј / Туре:			Type I/II			T + Wet	F + Wet 2498.4			
Max Water/C	Cementitious	Materials F	Ratio (Ibs/	0.48			T + Dry	2471.3			
28 day Desi	gn Strength,	(f'c):		4000 psi			Water	62.7			
28 day Requ	uired Streng	th, (f'cr):		5200 psi			Dry	1457.9	1232.5		
Slump Rang	ge (inches):			4 ± 1.5"	FA, CA M	lix Ratios	%M	1.95%	5.09%		
Entrained Ai	ir Content (%	by Volume):	6 ± 1.5%	2.22						
Mix Ratio by	weight (Cer	nentitious:S	and:Grave	1:2.47:3.07	2.97	Reference	Data:				
Sand Conte	nt (% by We	ight of SSD /	Agg):	42.8%		Ту	/pe I ceme	ent, Sp G:	3.15		
					Wa	ater, unit w	eight at 20	0 ⁰ C (pcf):	62.4		
Aggregate	Characteris	tics:									
Moisture	Size	AASHTO	Bulk Sp (SSD Sp G	App Sp G	Absorptior	Free water				
1.95%	Coarse Agg	M-43 #67	2.638	2.674	2.738	1.38%	0.57%				
5.09%	Fine Agg	M-6	2.643	2.675	2.732	1.23%	3.86%				
(annale	-	-	-	-	-	-	-				

Mix Design Spreadsheet (2)

Admixtures:		Enter Dose	Trial	Batch Amo	ounts	Cubic Yard	Amounts	Admixture	
		fl oz/100#	fl oz	ml	lbs	fl oz / yd ³	lbs / yd ³	SpG	
Polyheed 99)7	2.00	0.638	18.9	0.053	11.5	0.950	1.27	
MasterAir A	E 200	0.60	0.191	5.66	0.0126	3.4	0.227	1.01	
		0.00	0.000	0.0	0.000	0.0	0.000	1	
Dry Batch w	eights for	Dry Weight	Volume	SSD Batch	Field Moist	Aggregate			
1.0 yd ³		(lbs.)	(ft ³)	Weights	Batch Wts	Free Water			
	w/c ratio	0.500		(lbs.)	(lbs.)	(lbs.)	Cement:		
Total	free water	287					94	lbs / sack	
Cement		574	2.92	574	574		6	sack =	564.0 lbs
							Total Cem	entitious =	574.0 lbs
Mixing wate	r	287	4.60	287	229				
Coarse Agg	regate	1681	10.21	1704	1714	10	Paste Vol	ume (ft ³) =	7.520
Polyheed 99)7	0.950	0.01	1.0	1.0				
MasterAir A	E 200	0.227	0.00	0.2	0.2				
		0.000	0.00	0.0	0.0				
Air	6.0%		1.62						
	Volume	Subtotal =	19.37					Extra Wate	er Record:
Fine Aggreg	ate	1259	7.63	1274	1323	49		Tare	
	Totals	3802	27.00	3841	3841	58	5	Start T+W	
Unit W	eight (pcf)	140.8		142.2	142.2			End T+W	
							Wa	iter added	

9. Trial Batch Adjustments

- For no-air mix design you need to make at least three trial batches at different cement contents and different water/cement ratios. (ACI 301, Sec. 4.2.3.4.b, 3rd bullet)
- For air-entrained concrete you will need to make at least two addition batches to cover the entire specified air content range.
- (e.g. 6.0% Air has a ±1.5% air tolerance so you need a trial batch below 4.5% air, one within 0.5% of 6.0%, and one exceeding 7.5%.

9. Trial Batch Adjustments (2)

	Mass (lb)	Vol. (ft ³)								
w/c ratio	0.500		Cement:							
Total free water	282		94	lbs / sacl	ĸ					
ement, Cell B26>	564	2.87	6.0	sack =	564.0 lbs					
Silica Fume			Total Ceme	ntitious =	564.0 lbs					
Mixing water	282	4.52	otal Paste Volu	me (ft ³) =	7.389	← Steps	5-8, with	cursor on	this cell	
						use Goal	Seek to	change Ce	ement ma	ss
	Mass (lb)	Vol. (ft ³)				in Cell B2	26 until pa	aste volum	e = 7.515	
w/c ratio	. ,	. ,	Cement:							
Total free water	275		94	lbs / sacl	K					
Cement	611	3.11	6.5	sack =	611.0 lbs					
Silica Fume			Total Ceme	ntitious =	611.0 lbs					
Mixing water	275	4.41	otal Paste Volu	me (ft ³) =	7.515	← Step 4	l is Goal f	or all three	e w/c ratio	S
	Mass (lb)	Vol. (ft³)								
w/c ratio			Cement:							
Total free water	263		-	lbs / sacl						
ement, Cell B40>	658	3.35			658.0 lbs					
Silica Fume			Total Ceme							
Mixing water	263	4.22	otal Paste Volu	me (ft ³) =	7.566	← Step 9	9, with cur	rsor on this	s cell	
						use Goal	Seek to	change Ce	ement ma	SS
						in Cell B4	40 until pa	aste volum	e = 7.515	
Reference Data	a:									
	pe I ceme									
	Silica Fun	ne, Sp G:	2.2							
		,								

9. Trial batch adjustments (3)

A state of the sta						and the second		and the second second		
	Mass (lb)	Vol. (ft ³)								
w/c ratio	0.500		Cement:							
Total free water	287		94	lbs / sacl	K					
ement, Cell B26>	574	2.92	6.0	sack =	564.0 lbs					
Silica Fume			Total Ceme	ntitious =	573.6 lbs					
Mixing water	287	4.60	otal Paste Volu	me (ft ³) =	7.515	← Steps	5-8, with	cursor on	this cell	
						use Goal	Seek to	change C	ement mas	S
	Mass (lb)	Vol. (ft ³)				in Cell B2	26 until pa	aste volum	ne = 7.515	
w/c ratio	0.450		Cement:							
Total free water	275		94	lbs / sacl	K					
Cement	611	3.11	6.5	sack =	611.0 lbs					
Silica Fume			Total Ceme	ntitious =	611.0 lbs					
Mixing water	275	4.41	otal Paste Volu	me (ft ³) =	7.515	← Step 4	is Goal f	for all thre	e w/c ratio	S
	Mass (lb)	Vol. (ft ³)								
w/c ratio	0.400	· · ·	Cement:							
otal free water	261		94	lbs / sacl	K					
ement, Cell B40>	654	3.33	7.0	sack =	658.0 lbs					
Silica Fume			Total Ceme	ntitious =	653.6 lbs					
Mixing water	261	4.19	otal Paste Volu	me (ft ³) =	7.515	← Step 9), with cur	rsor on thi	s cell	
						use Goal	Seek to	change C	ement mas	S
						in Cell B4	10 until pa	aste volum	ne = 7.515	
Reference Data	1:									
Ту	pe I ceme	ent, Sp G:	3.15							
	Silica Fun	ne, Sp G:	2.2							
Water, unit w	eight at 20	$)^{0}$ C (pcf):	62.4							

End of ACI Mix Design

- In summary, an ACI 301 and ACI 211 compliant no-air concrete mix design will require at least three trial batches.
- An air entrained mix will need at least 5 trial batches, 3 no-air batches to establish strength vs. water/cement ratio and then at least two more batches at medium and high air contents to establish the strength variation with change in air content.

10. Proportions by Packing Density

- 1. Select maximum size of aggregate so concrete can be placed without excessive segregation or voids. Blend available aggregates to optimize the combined gradation as evaluated by gradation guidelines in section 4.1.1., 4.1.2 or section 4.1.3
- 2. Determine the volume of voids in the combined aggregate. (AASHTO T 19 / ASTM C29)
- 3. Estimate the amount of excess paste required to provide desired workability.
- 4. Calculate volume of paste required to fill the aggregate voids.
- 5. Calculate volumes of each aggregate.
- 6. Calculate weights of each aggregate.
- 7. Select w/c ratio based on compressive strength requirements
- 8. Calculate cement content.
- 9. Calculate water content.
- 10. Determine required entrained air content for exposure conditions and maximum aggregate size.
- 11. Trial batch adjustments.

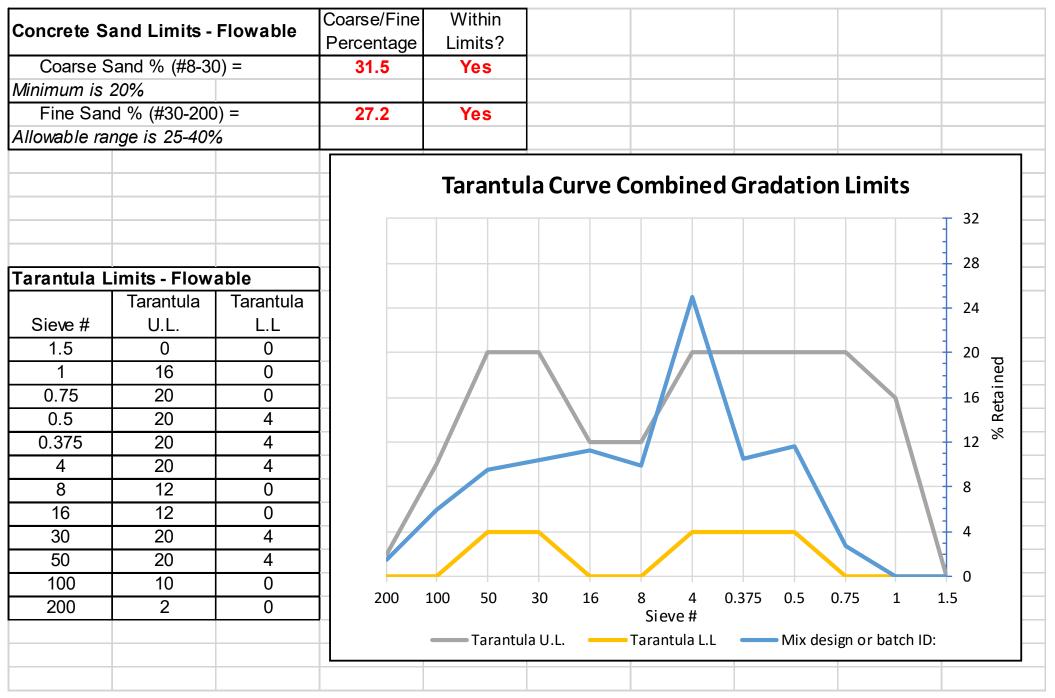
11. Full Mix Design - Appendix D

 Mix Design Procedure is outlined in ATM 530, Section 11, with Appendix D containing a full set of the required data, calculations, and graphs, in sequential spreadsheets.

11. Required data, calcs, & graphs

The following mix design data is arranged in developmental sequence.

11. Required Trial Batch Data


- 1. Aggregate structure is the starting point for good concrete proportions, properties, and performance. Perform gradations on representative samples of each aggregate (or use the average gradation from screening plant control charts). The following 7 worksheets contain required data for mix designs. (First 5 already shown in earlier slides)
 - a. Use worksheet 1-*Combined Aggregate Worksheet, Calcs, Graph*, to develop aggregate blend within the Tarantula Curve limits.
 - b. Use worksheet 2-*Duplicate Coarse Aggregate Specific Gravities & Absorption* for these tests.
 - c. Use worksheet 3-*Duplicate Fine Aggregate Specific Gravities & Absorption* for these tests.
 - d. Use worksheet 4-Bulk Density and Voids in Aggregate for these tests.
 - e. Use worksheet 5-*Constant Paste Volume Calculations* for three no-air batches to establish Compressive Strength vs. w/c Ratio
 - f. Use worksheet 6-MD Volumetric Data for each trial batch
 - g. Use worksheet 7-MD Compressive Strength, Unit Wt Data for each trial batch

Worksheet 1a

	Tarantu	la Curve	e Data Ei	ntry & G	raphical	Plot: Flo	wable C	Concrete	
Mix design	or batch ID:	Flowable Ex	ample xyz				Date	: 4/3/2023	
Enter Aggre	gate SSD We	ights under E	BLEND SUPF	PLIED below.					
Note: Blue	font is data e	ntry, Red fo	ont indicates	a calculatio	on cell				
			 	BLEND S		Г. D.			
Aggregat	te Sizes:	1.5"	1"	3/4"	Pea	Pea - Sand	F. Sand	Totals	
	eights (lbs)	0	0	1,762	0	0	1,417	3,179	
	Each Size	0.0%	0.0%	55.4%	0.0%	0.0%	44.6%	100.0%	
Enter Aggre	egate Gradat	tions:							
	E SIZE		RENTGF	RADATION	S, PERCI	ENT PASS	ING	Combined	Combined
(us)	(mm)	1.5"	1"	3/4"	Pea	C. Sand	F. Sand	% Passing	% Retained
1.5"	37.5	100	100	100	100	100	100	100.0	0.0
1.0"	25	0	0	100	100	100	100	100.0	0.0
3/4"	19	0	0	95	100	100	100	97.2	2.8
1/2"	12.5	0	0	74	100	100	100	85.6	11.6
3/8"	9.5	*	0	55	0	100	100	75.1	10.5
#4	4.75	*	0	10	0	0	100	50.1	24.9
#8	2.36	*	0	5	0	0	84	40.2	9.9
#16	1.18	*	*	4	0	0	60	29.0	11.3
#30	0.60	*	*	3	0	0	38	18.6	10.4
#50	0.30	*	*	2	0	0	18	9.1	9.5
#100	0.15	*	*	1	0	0	6	3.2	5.9
#200	0.075	0	0	1.0	0	0	2.8	1.8	1.4
Pan	0.000								1.8
								Total:	100.0

Worksheet 1b

2. Duplicate Coarse Aggregate Specific Gravities & Absorption

Formulas:	Description:	Trial 1	Trial 2	Average
Α	Oven dry mass in air (g)	2869.0	2892.6	
В	SSD mass in air (g)	2907.8	2933.5	
С	Mass in water (g)	1820.8	1836.2	
Т	Temperature ©	23.4	23.0	
A/(B-C)	Bulk Sp.G (oven dry)	2.639	2.636	2.638
B/(B-C)	SSD Sp.G	2.675	2.673	2.674
A/(A-C)	Apparent Sp.G	2.737	2.738	2.738
100[(B-A)/A]	% Absorption	1.35%	1.41%	1.38%

3. Duplicate Fine Aggregate Specific Gravities & Absorption

Formulas:	Description of data or calculation:	Trial 1	Trial 2	Average
В	Pyc+ Distilled Water	660.7	660.7	
	(from calib) Ave M pw, c (g)			
S	SSD Soil Mass	500.1	500.8	
С	Pyc + Distilled Water + Agg	973.7	974.5	
Т	Temperature (23.0 ± 2.0°C)	23.0	22.7	
A	Oven Dry Mass	493.4	495.3	
A/(B+S-C)	Bulk Sp.G. (Oven Dry)	2.637	2.649	2.643
S/(B+S-C)	SSD Sp.G.	2.673	2.678	2.675
A/(B+A-C)	Apparent Sp.G.	2.735	2.729	2.732
100(S-A)/A	Absorption	1.36%	1.11%	1.23%

4. Bulk Density and Voids in Aggregate

Method Used:	A	Ti			
Formula:	Description:	1	2	3	Avg.
G	Wt. of Agg. + T (lb)	32.984			-
Т	Wt. Tare (lb):	7.718			-
V	Volume(ft ³):	0.248			-
M = (G-T)/V	Bulk Density (lb/ft ³) (M)	102			102
A	% Absorption	1.38			-
M[1+(A/100)]	Bulk Density at SSD (lb/ft ³) (Mssd)	103			103
S	Bulk SpG (dry basis)	2.754			-
W	Water density 62.3 lb/ft ³)	62.3			-
100[(S*W)-M)/(S*W)]	% Void Content	40.6%			40.6%

5-Constant Paste Volume Calculations

	Mass (lb)	Vol. (ft ³)				
w/c ratio	0.500		Cement:			
Total free water	287		94 lbs / sa	ck		
ement, _{Cell B26} >	574	2.92	6.0 sack =	564.0 lbs	i	
Silica Fume			Total Cementitious	= 573.6 lbs	i and the second s	
Mixing water	287	4.60	otal Paste Volume (ft ³)	= 7.515	\leftarrow Steps 5-8, with cursor on this cell	
					use Goal Seek to change Cement mass	
	Mass (lb)	Vol. (ft ³)			in Cell B26 until paste volume = 7.515	
w/c ratio	0.450		Cement:			
Total free water	275		94 lbs / sa	ck		
Cement	611	3.11	6.5 sack =	611.0 lbs	i	
Silica Fume			Total Cementitious	= 611.0 lbs	i	
Mixing water	275	4.41	otal Paste Volume (ft ³)	= 7.515	← Step 4 is Goal for all three w/c ratios	
	Mass (lb)	Vol. (ft ³)		_		
w/c ratio	0.400		Cement:			
Total free water	261		94 lbs / sa	ck		
ement, Cell B40>	654	3.33	7.0 sack =	658.0 lbs	;	
Silica Fume			Total Cementitious	= 653.6 lbs		
Mixing water	261	4.19	otal Paste Volume (ft ³)	7.515	\leftarrow Step 9, with cursor on this cell	
					use Goal Seek to change Cement mass	
	in Cell B40 until paste volume =					

6a-MD Volumetric Data

Mix Desig	gn Volume	etric Data	- 6.0 sk	, No Air, 1	Frial (1)				
Note: Blu	e Font = I	Data Entr	y, Red F	ont = Ca	Iculation	Date:			
Type of Cor	ncrete:	5000 psi			Calc	ulated by:			
Project Nar	ne:	Slabs - No	t exposed	d to Freeze	/Thaw Ch	ecked by:			
Mix Design	Criteria:						Agg. N	Moisture (A	s Rec'd):
Maximum N	ominal Aggr	egate Size (inches):	3/4				CA	FA
Cement (Mir	nimum weig	ht per cubic	yard):	520 lbs			Tare	1012.1	1238.8
Cement Mfg	/Type:			Type I/II			T + Wet	2498.4	2534.0
Max Water/C	ementitious	Materials F	Ratio (Ibs/I	0.46			T + Dry	2470.0	2471.3
28 day Desi	gn Strength,	(fc):		5000 psi			Water	28.4	62.7
28 day Requ	uired Strengt	th, (f'cr):		6200 psi			Dry	1457.9	1232.5
Slump Rang	ge (inches):			4 ± 1.5"	FA, CA M	lix Ratios	%M 1.95%		5.09%
Entrained Air Content (% by Volume):			1.5 ± 1%	2.47					
Mix Ratio by	weight (Cen	nentitious:S	and:Grave	1:2.47:3.07	3.07	Reference	Data:		
Sand Content (% by Weight of SSD Agg):		44.6%			Type I cement, Sp G:				
						Water, ur	iit w eight at	20º C (pcf):	62.4
Aggregate (Characterist	tics:							
Moisture	Size	AASHTO	Bulk Sp G	SSD Sp G	App Sp G	Absorption	Free water		
1.95%	Coarse Agg	M-43 #67	2.638	2.674	2.738	1.38%	0.57%		
5.09%	Fine Agg	M-6	2.643	2.675	2.732	1.23%	3.86%		
Units:	1 gallon =	128 fl oz =	3785.3	milliliter	1 pound =	453.59	orams		
	. ganon	1 fl oz =	29.57		Pearla	.00.00	3.9110		
Admixtures	:	Enter Dose		Batch Amo	ounts	Cubic Ya	ard Amt.	Admixture	
		fl oz/100#	fl oz	ml	lbs	fl oz / yd ³	lbs / yd ³	SpG	
Polyheed 9	97	2.00	0.638	18.9	0.053	11.5	0.950		
Micro-Air		0.00	0.000	0.00	0.0000	0.0	0.000	1.01	
		0.00	0.000	0.0	0.000	0.0	0.000	1	

6b-MD Volumetric Data

Dry Batch weights for Weight		Volume	SSD Batch	Field Moist	Aggregate				
1.0 yd^3		(lbs.)	(ft^3)	Weights	Batch Wts	Free Water			
	W/C Ratio	0.500		(lbs.)	(lbs.)	(lbs.)	Cement:		
Tota	al free water	287					94 lbs / sack		
	Cement	574	2.92	574	574		6	sack=	564.0 lbs
							Total Cem	entitious =	574.0 lbs
Ν	lixing water	287	4.60	287	223				
Coarse Agg	regate (Dry)	1738	10.56	1762	1772	10	Paste Volume $(ft^3) =$		7.520
Polyheed 99'	Polyheed 997 Admixture 2.376		0.03	2.4	2.4				
Micro-Air A	Micro-Air Admixture		0.00	0.0	0.0				
		0.000	0.00	0.0	0.0				
Air	1.5%		0.41						
Volume Subtotal = 18.51						Extra Wate	er Record:		
Fine Aggregate (Dry)		1400	8.49	1417	1471	54		Tare	
	Totals	4001	27.00	4042	4042	64		Start T+W	
Unit Weight (pcf) 148.2		149.7	149.7			End T+W			
							W	ater added	
T = Theoreti	152.00								

6c-MD Volumetric Data

Mix Desig	<mark>jn Volum</mark> e	tric Data	- 6.0 sk	Trial (1) -	- Continued			
Trial Batch Volumetrics Weight			Volume		Added water (lbs)			
Size (ft ³)	1.5	(lbs.)	(ft ³)	Total Mix	king Water in	Trial batch	15.944	
Cement		31.889	0.162		Final	W/C Ratio	0.500	
		0.000						
Mixing wate	er	12.386	0.198					
Dry Coarse	Aggregate	96.556	0.587					
CA Absorpt	ion	1.332			For Sizing Tri	al Batch:		
CA Free Water		0.550	0.009	Note:	6x12 cyl =	0.196	ft ³	
Fotal Weight Wet CA =		98.438			4x8 cyl =	0.058	ft ³	
Polyheed 997 Admixtu		0.053	0.001	Slump cone =		0.204	ft ³	
Micro-Air Admixture		0.000	0.000	Unit wt bucket =		0.25	ft ³	
		0.000	0.000	16	ea 4x8 cyl =	0.93	ft ³	
Air	1.5%	0.00	0.023	Min	Trial batch =	1.38	ft ³	
Dry Fine Aggregate		77.928	0.473					
FA Absorption		0.959						
FA Free Water		3.008	0.048					
Fotal Weight Wet FA =		81.895						
	Totals	224.661	1.500					
Calculated	Unit Wt w/A	dmixtures	149.8	pcf				

6d-MD Volumetric Data

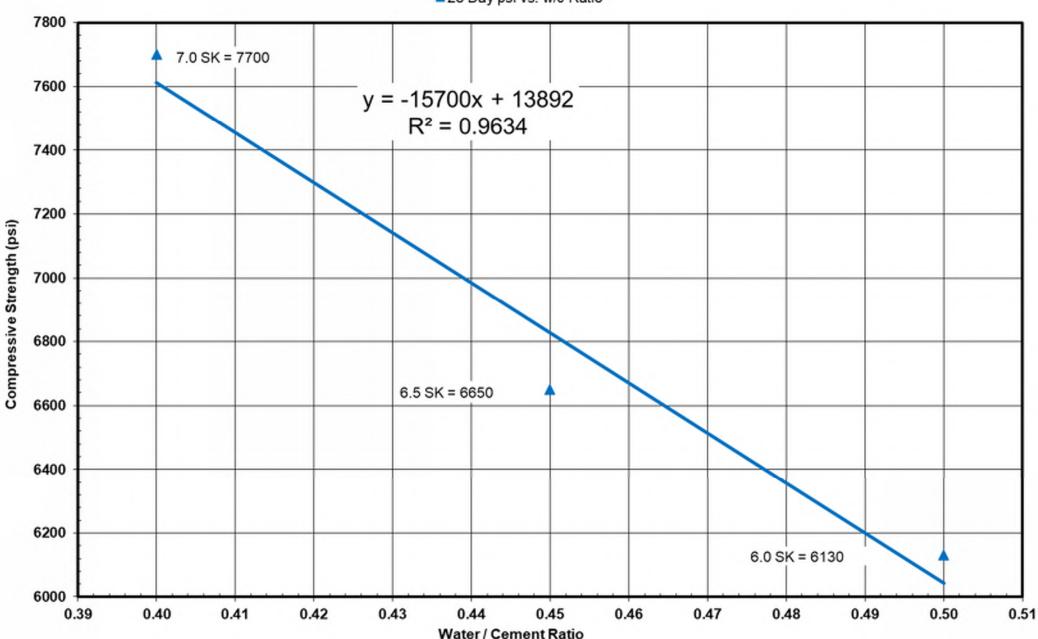
Trial Batch	Data:								
emperature	48	⁰ F		Weig	ght of Tare	7.920	lbs		
Slump	5.5	inches	W	/t of Tare &	Concrete	44.725	lbs		
Air	2.0%			Weight of	f Concrete	36.805	lbs		
Unit Weight	147.2	pcf		Volur	ne of Tare	0.2500	ft ³		
∕ield (ft³/sk)	4.498	Weigh	nt of all ing	gredients a	s batched	224.661	lbs		
(ASTM C13	8, Sec 7.6,	Equation (7))						
To calculate % Air from Unit Weight:									
A = [(T - D)/	T] x 100		Calculate	e % Air (x)	Neight (y)				
Where:	A = % Air		For D =	147.2	pcf				
	D = Wet U	nit Weight	A =	3.2	% Air				
	T = Theore	tical Maxin	num Unit	Weight =	152.1				
				or					
To calculate Unit Weight from % Air:									
Solve: A = [(T - D)/T] x	100 for D	Calculate	e Unit Weig	ght (y) from	% Air (x)			
A/100 =	(T - D)/T		For A =	1.5	% Air				
AT/100 =	T - D		D =	149.8	pcf				
D =	T - AT/100								

7a-MD Compressive Strength Data

5/3/2013 5/6/2013 3 182 4.00 4.01 12.60 34,040 2700 18600 5/3/2013 5/6/2013 3 183 3.99 4.00 12.53 34,020 2710 18700 5/3/2013 5/6/2013 3 184 4.00 3.99 12.53 33,765 2690 18500 5/3/2013 5/10/2013 7 185 4.000 4.000 12.57 58,015 4620 31900 5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 57,115 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 4.010 12.60 71,855 5700 39300 5/3/2013 5/17/2013 14 190 3.990 4.010 12.53 69,875 5570	Mix Design Compressive Strength & Unit Weight Data - 6sk Trial 1, No Air, f'c = 5000 psi									
Cast Tested Age (Days) Cyl ID (yl ID Diameter (Inches) Diameter (Inches) Peak (Sq Inch) Load (Pounds) fc (psi) fc (kPa) 5/3/2013 5/6/2013 3 181 4.00 4.00 12.57 34,085 2710 18700 5/3/2013 5/6/2013 3 182 4.00 4.01 12.60 34,040 2700 18600 5/3/2013 5/6/2013 3 182 4.00 4.01 12.60 34,040 2700 18600 5/3/2013 5/6/2013 3 184 4.00 3.99 12.53 33,765 2690 18500 5/3/2013 5/10/2013 7 185 4.000 4.000 12.65 58,655 4650 32100 5/3/2013 5/10/2013 7 186 4.020 4.010 12.66 58,175 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 <td colspan="10">Note: Blue Font = Data Entry, Red Font = Calculation 1.00 psi = 6.894761 kPa</td>	Note: Blue Font = Data Entry, Red Font = Calculation 1.00 psi = 6.894761 kPa									
Age Cast Age (Days) Cyl ID Cyl ID 1 (Inches) 2 (Inches) XC Area (Sq Inch) Load (Pounds) fc (psi) fc (kPa) 5/3/2013 5/6/2013 3 181 4.00 4.00 12.57 34,085 2710 18700 5/3/2013 5/6/2013 3 182 4.00 4.01 12.60 34,040 2700 18600 5/3/2013 5/6/2013 3 183 3.99 4.00 12.53 34,020 2710 18700 5/3/2013 5/6/2013 3 184 4.00 3.99 12.53 33,765 2690 18500 5/3/2013 5/10/2013 7 185 4.000 4.000 12.57 58,015 4620 31900 5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/201	Da	te & Age Da	ata	C	ylinder Cor	npressive S	Strength Dat	ta	Compressiv	<i>i</i> e Strength
Cast Tested (Days) Cyl ID (Inches) (Inches) (Sq Inch) (Pounds) (psi) (kPa) 5/3/2013 5/6/2013 3 181 4.00 4.00 12.57 34,085 2710 18700 5/3/2013 5/6/2013 3 182 4.00 4.01 12.60 34,040 2700 18600 5/3/2013 5/6/2013 3 183 3.99 4.00 12.53 34,020 2710 18700 5/3/2013 5/6/2013 3 184 4.00 3.99 12.53 33,765 2690 18500 5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 57,115 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013					Diameter					
5/3/2013 5/6/2013 3 181 4.00 4.00 12.57 34,085 2710 18700 5/3/2013 5/6/2013 3 182 4.00 4.01 12.60 34,040 2700 18600 5/3/2013 5/6/2013 3 183 3.99 4.00 12.53 34,020 2710 18700 5/3/2013 5/6/2013 3 184 4.00 3.99 12.53 33,765 2690 18500 5/3/2013 5/10/2013 7 185 4.000 4.000 12.57 58,015 4620 31900 5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 57,115 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 12.57 71,350 5680 39200 </td <td></td> <td></td> <td>•</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			•		1					
5/3/2013 5/6/2013 3 182 4.00 4.01 12.60 34,040 2700 18600 5/3/2013 5/6/2013 3 183 3.99 4.00 12.53 34,020 2710 18700 5/3/2013 5/6/2013 3 184 4.00 3.99 12.53 33,765 2690 18500 5/3/2013 5/10/2013 7 185 4.000 4.000 12.57 58,015 4620 31900 5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 57,115 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 4.010 12.60 71,855 5700 39300 5/3/2013 5/17/2013 14 190 3.990 4.010 12.53 69,875 5570	Cast	Tested	(Days)	Cyl ID	(Inches)	(Inches)	(Sq Inch)	(Pounds)	(psi)	(kPa)
5/3/2013 5/6/2013 3 183 3.99 4.00 12.53 34,020 2710 18700 5/3/2013 5/6/2013 3 184 4.00 3.99 12.53 33,765 2690 18500 5/3/2013 5/10/2013 7 185 4.000 4.000 12.57 58,015 4620 31900 5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 4.010 12.66 58,175 4590 3900 5/3/2013 5/17/2013 14 190 3.990 4.010 12.57 71,350 5680 39200 5/3/2013 5/17/2013 14 191 3.990 4.000 12.53 69,875 5570	5/3/2013	5/6/2013	3	181	4.00	4.00	12.57	34,085	2710	18700
5/3/2013 5/6/2013 3 184 4.00 3.99 12.53 33,765 2690 18500 5/3/2013 5/10/2013 7 185 4.000 4.000 12.57 58,015 4620 31900 5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 57,115 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 4.010 12.60 71,855 5700 39300 5/3/2013 5/17/2013 14 190 3.990 4.010 12.57 71,350 5680 39200 5/3/2013 5/17/2013 14 191 3.990 4.000 12.60 70,755 5620 38700 5/3/2013 5/31/2013 28 193 3.990 4.000 12.60 70,755 5620	5/3/2013	5/6/2013	3	182	4.00	4.01	12.60	34,040	2700	18600
5/3/2013 5/10/2013 7 185 4.000 4.000 12.57 58,015 4620 31900 5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 57,115 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 4.010 12.60 71,855 5700 39300 5/3/2013 5/17/2013 14 190 3.990 4.010 12.57 71,350 5680 39200 5/3/2013 5/17/2013 14 191 3.990 4.000 12.53 69,875 5570 38400 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/3/2013 5/31/2013 28 193 3.990 4.000 12.50 <t< td=""><td>5/3/2013</td><td>5/6/2013</td><td>3</td><td>183</td><td>3.99</td><td>4.00</td><td>12.53</td><td>34,020</td><td>2710</td><td>18700</td></t<>	5/3/2013	5/6/2013	3	183	3.99	4.00	12.53	34,020	2710	18700
5/3/2013 5/10/2013 7 186 4.020 3.990 12.60 58,565 4650 32100 5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 57,115 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 4.010 12.60 71,855 5700 39300 5/3/2013 5/17/2013 14 190 3.990 4.010 12.57 71,350 5680 39200 5/3/2013 5/17/2013 14 191 3.990 4.000 12.53 69,875 5570 38400 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/31/2013 28 193 3.990 4.000 12.53 78,255 <td< td=""><td>5/3/2013</td><td>5/6/2013</td><td>3</td><td>184</td><td>4.00</td><td>3.99</td><td>12.53</td><td>33,765</td><td>2690</td><td>18500</td></td<>	5/3/2013	5/6/2013	3	184	4.00	3.99	12.53	33,765	2690	18500
5/3/2013 5/10/2013 7 187 4.020 4.010 12.66 57,115 4510 31100 5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 4.010 12.60 71,855 5700 39300 5/3/2013 5/17/2013 14 190 3.990 4.010 12.57 71,350 5680 39200 5/3/2013 5/17/2013 14 191 3.990 4.000 12.53 69,875 5570 38400 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/31/2013 28 193 3.990 4.000 12.53 78,255 6240 43000 5/3/2013 5/31/2013 28 194 4.000 3.980 12.50 75,930 <t< td=""><td>5/3/2013</td><td>5/10/2013</td><td>7</td><td>185</td><td>4.000</td><td>4.000</td><td>12.57</td><td>58,015</td><td>4620</td><td>31900</td></t<>	5/3/2013	5/10/2013	7	185	4.000	4.000	12.57	58,015	4620	31900
5/3/2013 5/10/2013 7 188 4.020 4.010 12.66 58,175 4590 31600 5/3/2013 5/17/2013 14 189 4.000 4.010 12.60 71,855 5700 39300 5/3/2013 5/17/2013 14 190 3.990 4.010 12.57 71,350 5680 39200 5/3/2013 5/17/2013 14 191 3.990 4.000 12.53 69,875 5570 38400 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/31/2013 28 193 3.990 4.000 12.53 78,255 6240 43000 5/3/2013 5/31/2013 28 194 4.000 3.980 12.50 75,930 6070 41900 5/3/2013 5/31/2013 28 195 3.980 3.980 12.44 76,835 <	5/3/2013	5/10/2013	7	186	4.020	3.990	12.60	58,565	4650	32100
5/3/2013 5/17/2013 14 189 4.000 4.010 12.60 71,855 5700 39300 5/3/2013 5/17/2013 14 190 3.990 4.010 12.57 71,350 5680 39200 5/3/2013 5/17/2013 14 191 3.990 4.000 12.53 69,875 5570 38400 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/31/2013 28 193 3.990 4.000 12.53 78,255 6240 43000 5/3/2013 5/31/2013 28 194 4.000 3.980 12.50 75,930 6070 41900 5/3/2013 5/31/2013 28 195 3.980 3.980 12.44 76,835 6180 42600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110	5/3/2013	5/10/2013	7	187	4.020	4.010	12.66	57,115	4510	31100
5/3/2013 5/17/2013 14 190 3.990 4.010 12.57 71,350 5680 39200 5/3/2013 5/17/2013 14 191 3.990 4.000 12.53 69,875 5570 38400 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/31/2013 28 193 3.990 4.000 12.53 78,255 6240 43000 5/3/2013 5/31/2013 28 194 4.000 3.980 12.50 75,930 6070 41900 5/3/2013 5/31/2013 28 195 3.980 3.980 12.44 76,835 6180 42600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110	5/3/2013	5/10/2013	7	188	4.020	4.010	12.66	58,175	4590	31600
5/3/2013 5/17/2013 14 191 3.990 4.000 12.53 69,875 5570 38400 5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/31/2013 28 193 3.990 4.000 12.53 78,255 6240 43000 5/3/2013 5/31/2013 28 194 4.000 3.980 12.50 75,930 6070 41900 5/3/2013 5/31/2013 28 195 3.980 3.980 12.44 76,835 6180 42600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600	5/3/2013	5/17/2013	14	189	4.000	4.010	12.60	71,855	5700	39300
5/3/2013 5/17/2013 14 192 4.010 4.000 12.60 70,755 5620 38700 5/3/2013 5/31/2013 28 193 3.990 4.000 12.53 78,255 6240 43000 5/3/2013 5/31/2013 28 194 4.000 3.980 12.50 75,930 6070 41900 5/3/2013 5/31/2013 28 195 3.980 3.980 12.44 76,835 6180 42600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600	5/3/2013	5/17/2013	14	190	3.990	4.010	12.57	71,350	5680	39200
5/3/2013 5/31/2013 28 193 3.990 4.000 12.53 78,255 6240 43000 5/3/2013 5/31/2013 28 194 4.000 3.980 12.50 75,930 6070 41900 5/3/2013 5/31/2013 28 195 3.980 3.980 12.44 76,835 6180 42600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600	5/3/2013	5/17/2013	14	191	3.990	4.000	12.53	69,875	5570	38400
5/3/2013 5/31/2013 28 194 4.000 3.980 12.50 75,930 6070 41900 5/3/2013 5/31/2013 28 195 3.980 3.980 12.44 76,835 6180 42600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600 6070 41900 3.980 3.980 3.980 12.44 75,110 6040 41600	5/3/2013	5/17/2013	14	192	4.010	4.000	12.60	70,755	5620	38700
5/3/2013 5/31/2013 28 195 3.980 3.980 12.44 76,835 6180 42600 5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600 Average 3 day fc= 2703	5/3/2013	5/31/2013	28	193	3.990	4.000	12.53	78,255	6240	43000
5/3/2013 5/31/2013 28 196 3.980 3.980 12.44 75,110 6040 41600 Average 3 day fc= 2703	5/3/2013	5/31/2013	28	194	4.000	3.980	12.50	75,930	6070	41900
Average 3 day fc= 2703	5/3/2013	5/31/2013	28	195	3.980	3.980	12.44	76,835	6180	42600
	5/3/2013	5/31/2013	28	196	3.980	3.980	12.44	75,110	6040	41600
							Average	e 3 day fc=	2703	
Average 7 day fc= 4593							Average	e 7 day fc=	4593	
Average 14 day fc= 5643							Average	14 day fc=	5643	
Average 28 day fc= 6133							Average	28 day fc=	6133	

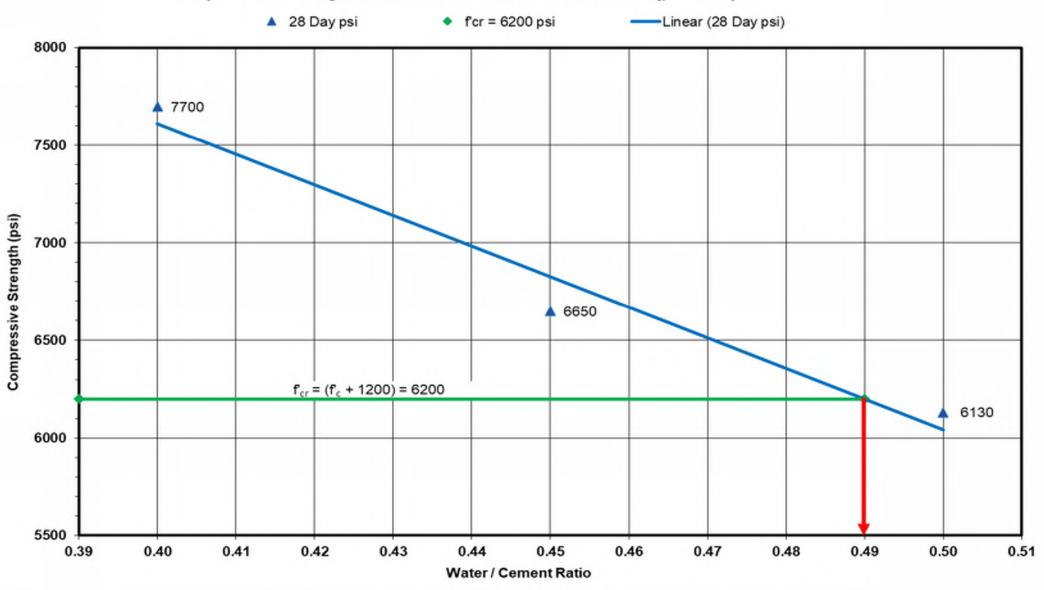
7b-MD Unit Weight Data

Note: Use cylinder unit weight to check wet unit weight and mix design value.						Find root	cause if Δ >	> 1.85 pcf	
Cylinder Unit Weight Data							Unit Weight		
Cyl ID	Wt in Air	Wt in H_2O	H_2O Temp	H ₂ 0 Density	Cyl Volume	Cyl Density			
Number	(grams)	(grams)	(⁰ C)	(g/cm ³)	(cm ³)	(g/cm ³)	(lbs/ft ³)	(kg/m ³)	
181	3944.5	2298.1	22.8	0.99759	1650.4	2.3901	149.1	2390	
182	3960.2	2315.3	22.8	0.99759	1648.9	2.4018	149.9	2402	
183	3926.3	2285.1	22.8	0.99759	1645.2	2.3866	148.9	2387	
184	3938.1	2295.2	22.8	0.99759	1646.9	2.3913	149.2	2391	
185	3948.9	2304.1	23.9	0.99732	1649.2	2.3944	149.4	2394	
186	3973.4	2328.2	23.9	0.99732	1649.6	2.4087	150.3	2409	
187	3975.1	2325.2	23.9	0.99732	1654.3	2.4028	149.9	2403	
188	3949.9	2305.6	23.9	0.99732	1648.7	2.3957	149.5	2396	
189	3981.8	2338.5	20.6	0.99808	1646.5	2.4184	150.9	2418	
190	3971.2	2320.1	20.6	0.99808	1654.3	2.4006	149.8	2401	
191	3990.2	2349.6	20.6	0.99808	1643.8	2.4275	151.5	2427	
192	3989.5	2348.3	20.6	0.99808	1644.4	2.4262	151.4	2426	
193	3970.1	2322.7	20.5	0.99810	1650.5	2.4053	150.1	2405	
194	3956.0	2312.4	20.5	0.99810	1646.7	2.4023	149.9	2402	
195	3967.5	2322.8	20.5	0.99810	1647.8	2.4077	150.2	2408	
196	3977.4	2332.9	20.5	0.99810	1647.6	150.6	2414		
				ŀ	Average Uni	150.0			
			3-day	cylinder av	verage unit	t weight =	149.3		
		14	4 & 28-day	cylinder av	verage unit	t weight =	150.6		


One batch done, How many more?

- Two more No Air trial batches were done at 6.5 & 7.0 sack to define the no-air strength to w/c ratio.
- Summary of No Air Batches:
 - Sack w/c Pres./Grav. % Air Compressive Strength
 6.0sk 0.50 2.0 / 0.9 6130psi
 6.5sk 0.45 1.4 / 1.3 6650psi
 7.0sk 0.40 1.5 / 1.7 7700psi

Graph 1a, NO AIR psi vs. w/c

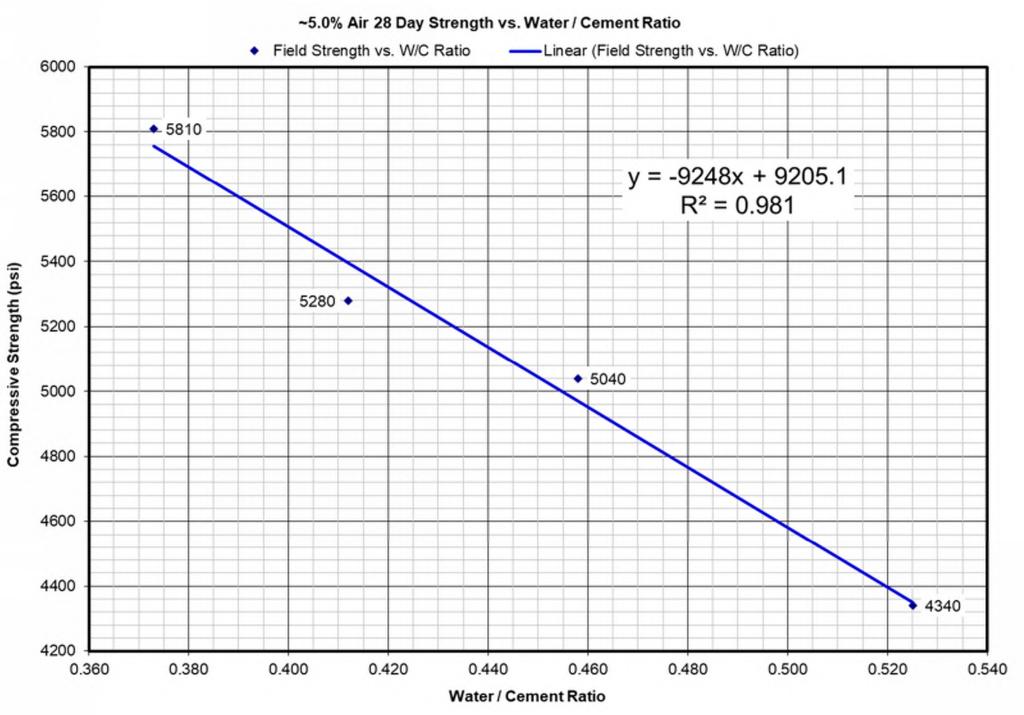

NO AIR Compressive Strength vs. Water / Cement Ratio - 3 trial batches

▲28 Day psi vs. w/c Ratio

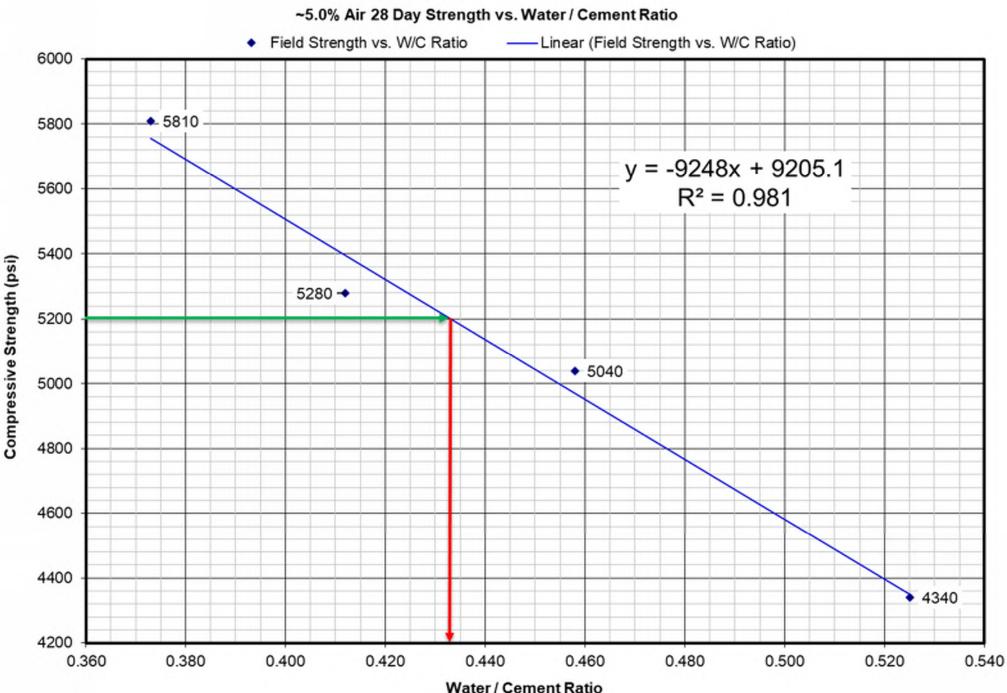
Graph 1b, NO AIR psi vs. w/c Ratio w/Line at f'_{cr} = 6200 psi

Compressive Strength vs. Water / Cement Ratio w/Line at f'cr = 6200 psi

For 5000 psi No Air concrete final proportions: Maximum w/c = 0.49

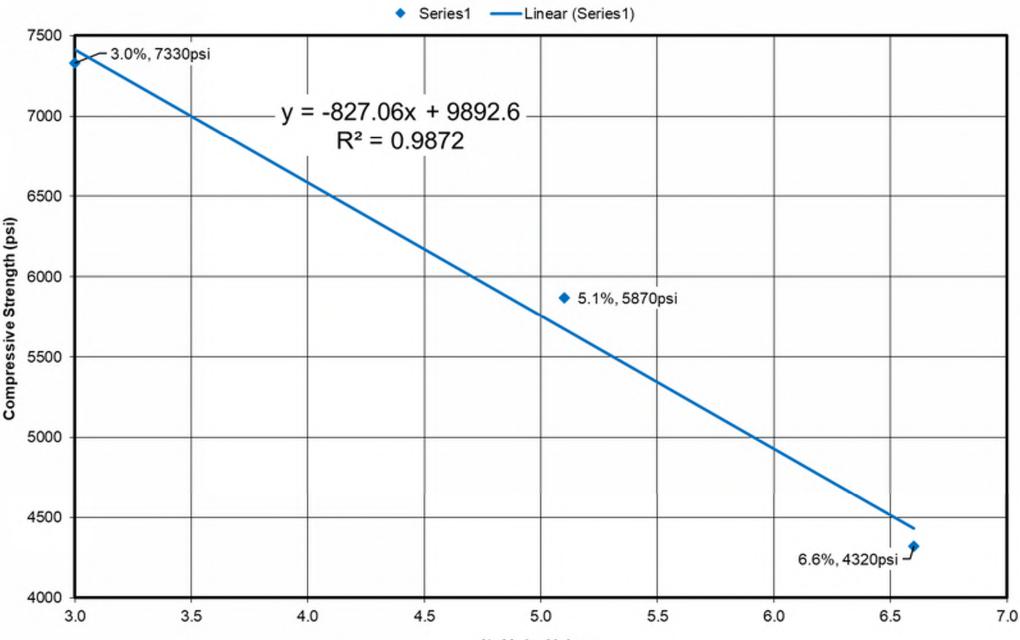

One trial batch done, ? More to go

 Four ~5% Air batches were needed to define the % Air to Compressive strength relationship through the range of cement contents and w/c ratios:


Sack	w/c	Press.% Air	Compressive Strength
6.0sk	0.532	4.5	4340psi
6.5sk	0.467	4.8	5040psi
7.0sk	0.411	4.5	5280psi
7.5 sk	0.362	3.5	5810psi

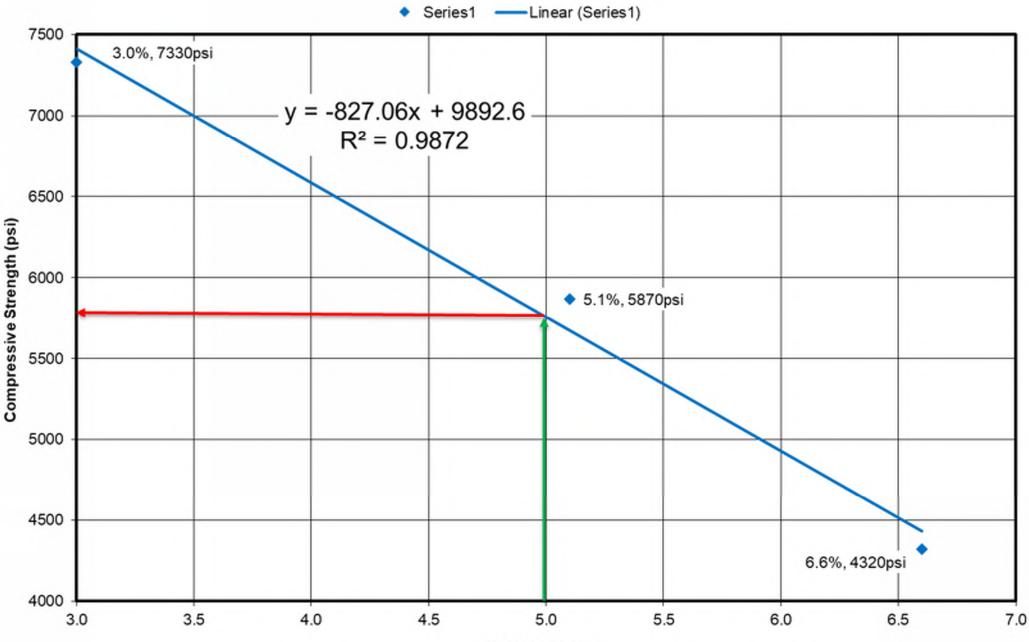
Graph 2a ~5.0% Air 28 Day psi vs. w/c

Graph 2b ~5.0% Air 28 Day psi vs. w/c


Getting close to our goal

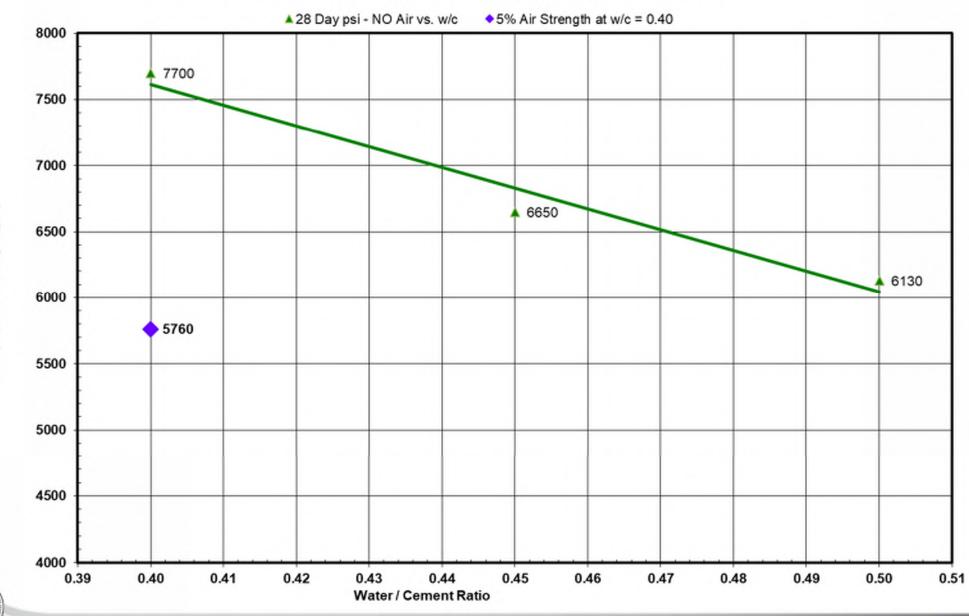
 Make three batches at 0.400 w/c ratio at low, optimum and high air contents to define the variation of strength throughout the 5.0±1.5% Air range.

Graph 3a, 28-Day psi vs. % Air

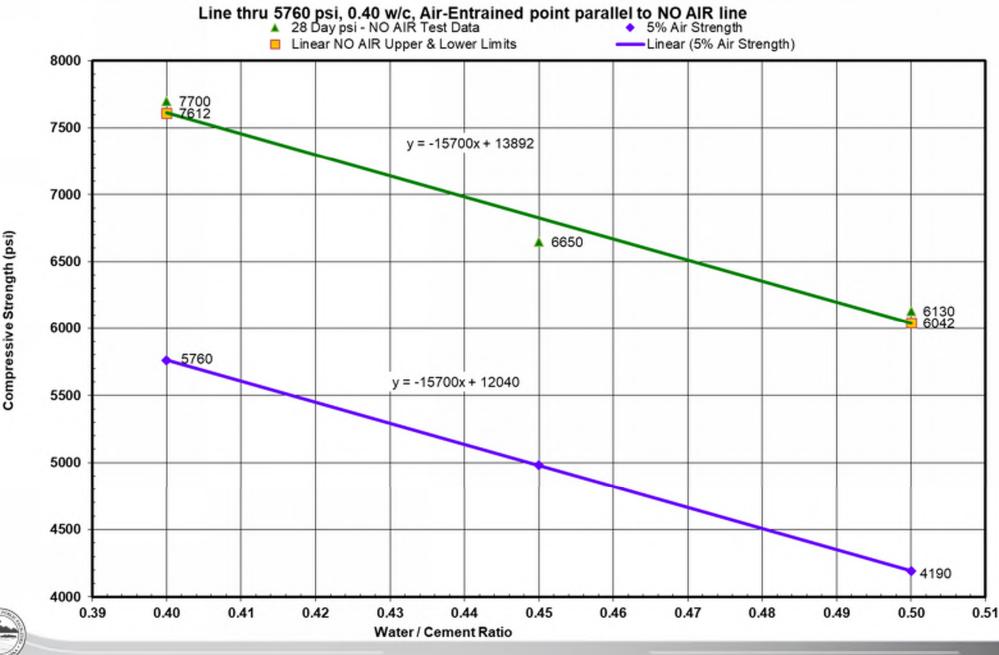

28 Day Strength vs. % Air for three batches at W/C = 0.400

% Air by Volume

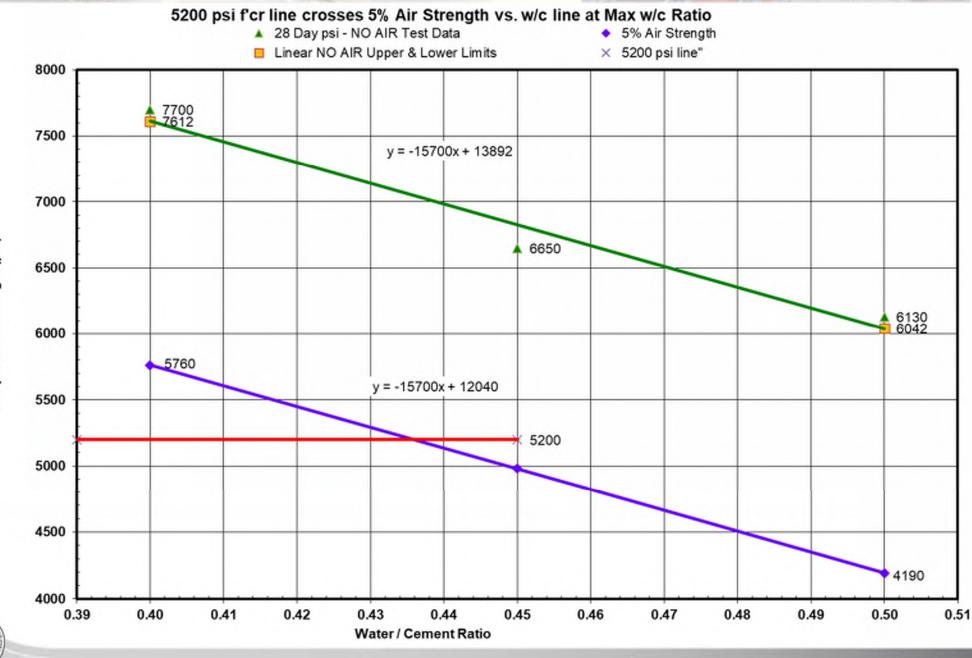
Graph 3b, psi at 5.0% Air


28 Day Strength @ 5% Air, W/C = 0.400

% Air by Volume

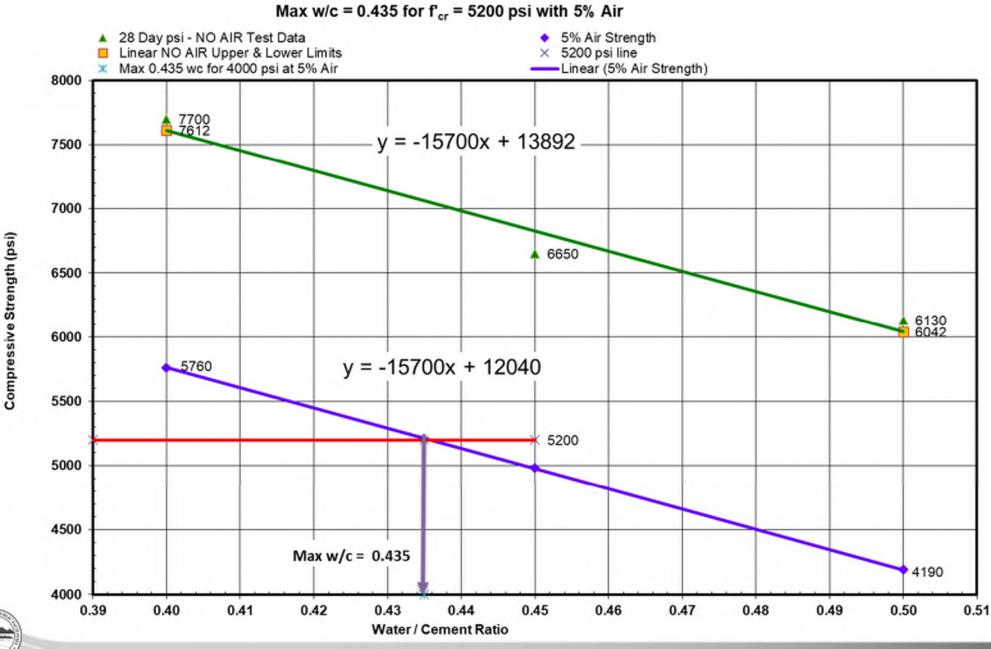

Graph 4a, 5760 psi point at 0.40 w/c, 5% Air, and NO AIR Strength vs. w/c line

5760 psi point at 0.40 w/c, 5% Air, Plotted w/ NO AIR Strength vs. w/c line



Compressive Strength (psi)

Graph 4b, Draw line thru 5760 psi point parallel to NO AIR line

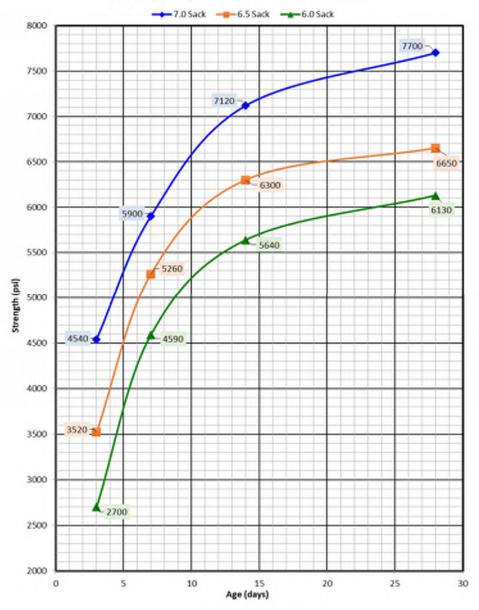


Graph 4c, Draw 5200 psi f'cr line to intercept 5% Air Strength vs wc

Compressive Strength (psi)

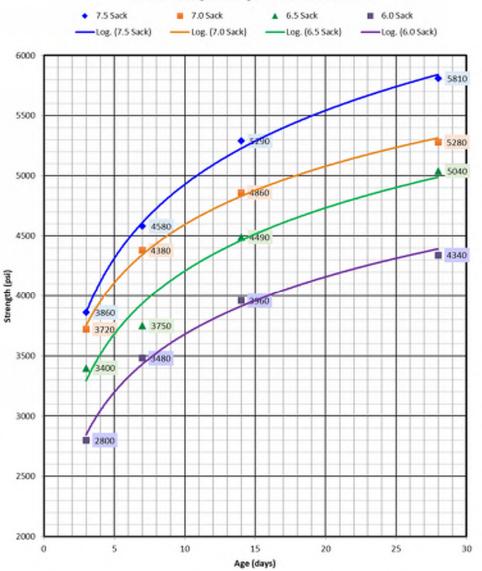
Graph 4d, Max w/c Ratio = 0.435 for f'cr = 5200 psi w 5% Air

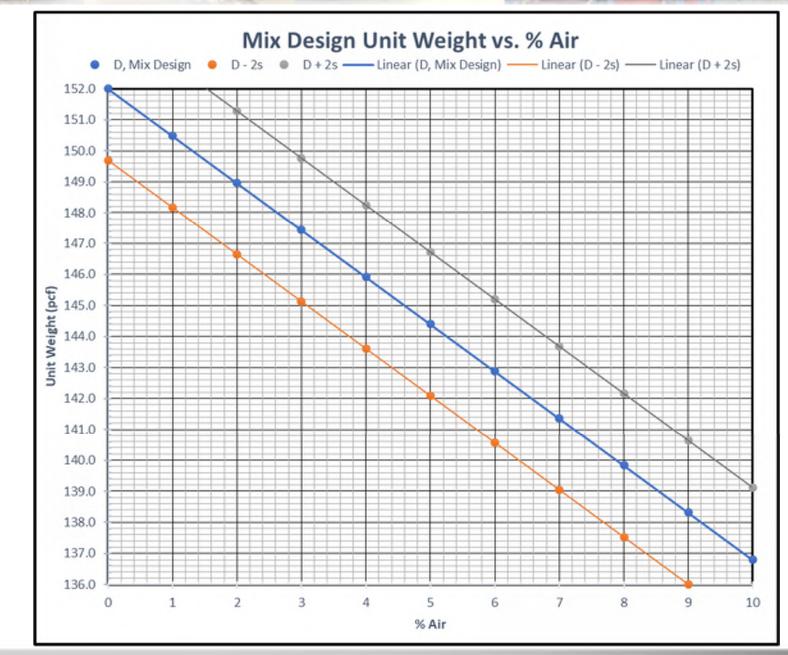
84


Batching Summary

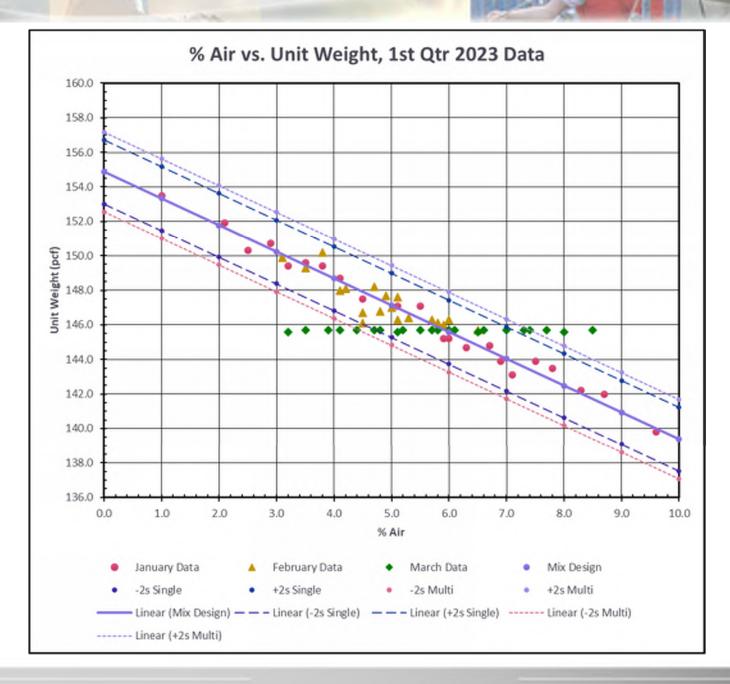
- We made a total of 10 trial batches.
- The following graphs summarize the essential data from trial batches.

Graph 5, NO AIR Strength vs. Age for 3 Cement Contents

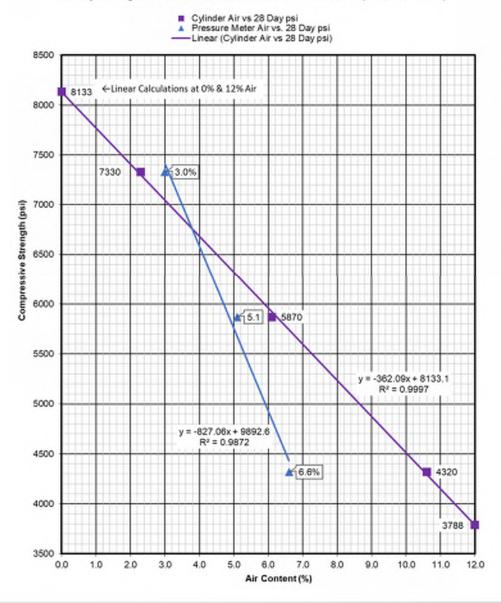

NO AIR Strength vs. Age - 3 Cement Contents


Graph 6, 5% Air Strength vs. Age for 4 Cement Contents

5% Air Strength vs. Age - 4 Cement Contents



Graph 7, Mix Design Unit Weight vs % Air w 2s Limits


88

Example, Unit Weight vs % Air

Graph 8, 28 Day Strength vs. Gravimetric & Pressure Air Contents

28 Day Strength vs. Gravimetric & Pressure Air Contents (7sk, w/c = 0.41)

Why Measure Unit Weight and %Air?

MasterAir AE 200

Air Content Determination: The total air content of normal weight concrete should be measured in strict accordance with ASTM C 231, "Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method" or ASTM C 173/C173M, "Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method."

The air content of lightweight concrete should only be determined using the Volumetric Method. The air content should be verified by calculating the gravimetric air content in accordance with ASTM C 138/C 138M, "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete." If the total air content, as measured by the Pressure Method or Volumetric Method and as verified by the Gravimetric Method, deviates by more than 1.5%, the cause should be determined and corrected through equipment calibration or by whatever process is deemed necessary.

In a trial mixture, use 0.125 to 1.5 fl oz/cwt (8-98 mL/100 kg) of cement.

Using Graphs for acceptance/rejection decisions

Graphs of w/c vs. compressive strength and entrained-air vs. compressive strength provide design and construction personnel with valuable strength information for acceptance/rejection decisions should concrete arrive at the job site that is outside w/c or entrained-air limits.

A theoretical percent air vs. unit weight graph provides a good check of pressure type air meter readings.

12. Final mix Design Report

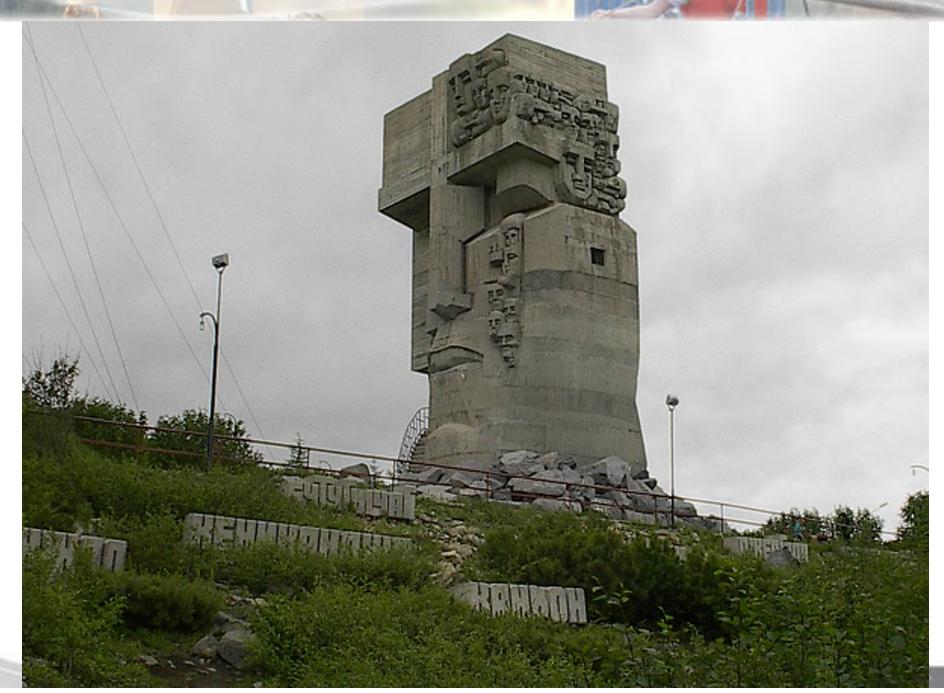
Include the following:

- 1. Project identification, Source/Supplier of mix and name of the general contractor when mix design is specific for a single project.
- 2. Aggregate source(s), quality identification(s), target gradation of each aggregate, blend ratio of individual stockpiles, individual aggregate absorption values, apparent, bulk SSD, and bulk specific gravities. For blended Aggregate sources, screen and test Coarse and Fine Fractions. Other properties that may be specified such as; Unit Weight of dry-rodded coarse aggregate, fineness modulus of the blended fine aggregate, percent flat and elongated; sodium sulfate soundness of coarse and fine aggregate fractions, or aggregate-silica reactivity (ASR).
- 3. Gradation for each aggregate stockpile with graphical representation on Tarantula Curve of the combined aggregate gradation. AASHTO M 6 and M 43gradations for ACI 211.1 mixes. Include Lower Specification Limit (LSL) and Upper Specification Limit (USL) data with both combined and ACI gradations.

12. Final mix Design Report (2)

Include the following:

- 4. An orderly presentation of all trial batch data including; type(s) and source certificate with chemical oxide analysis for all cementitious materials, trial batch proportions, complete test cylinder data with unit weight of all cylinders determined immediately after initial curing period and removal from molds, surface resistivity (when required) of test cylinders, with nominal cylinder size indicated, just before compressive testing, compressive strength and average compressive strength at each age.
 - Include graphs of Compressive strength vs. w/c Ratio and Compressive strength vs. Air content (for air-entrained mixes). Plot trial batch data points on graph(s) along with best-fit linear trend line. For trial batch nearest to selected mix design proportions plot Strength vs. Age points and the best-fit smoothed curve through the data points.
 - Plot the wet unit weight (D) versus air contents of 0% to 10% from the theoretical unit weight (T) using ASTM C138, Sec 7.6, Equation (7), A = [(T D)/T] x 100, Where: A = % Air, D = Wet Unit Weight, and T = Theoretical Maximum Unit Weight.
- 5. Identification and address of the laboratory that performed the mix design, mix design identification number, and the signed seal of the professional engineer who reviewed and approved the mix design.


				Depar	/ State of tment of T		ation			
					& Public F	-				
	-							<i>i</i> =		
	Su	oplier S	ubmi	tted Co	ncrete	Propoi	rtions	(Form	25D-20	3)
					m as needed t	o meet proje	ct and mixt	ture requirem	ents.	
Project No	Example		Pro	ject Name:	Example					
Supplier:	XYZ			Plan	nt Location:	Anytown			Mix ID No.	123
Aaareaate	Materials	erials Source(s): Big Pit Cement Brand/Type:				Type I/II				
55 5					automatically	compute valu	Jes.			
		<u>۸</u>	_						(h. ())	
Class		<u>A</u>	Cor	ncrete	MINIMU	im Com	pressiv	/e Streng	gth (psi):	4000
Specifica	tions:			Use:	Precast P	roducts	Cemen	t Content	(sacks/cy):	6.75
				-Si	eve Anal	vsis -				
AA	SHTO Gr.#	67		AASHTO (8		AA	SHTO Gr.#	M6
Coa	arse Agg	regate		Interme	diate Ago	aregate			Fine Agg	regate
Sieve	% Pass	Specs		Sieve	% Pass	Specs	1	Sieve	% Pass	Specs
1 1/2"	100							3/8"		100
1"	100	100		1"		100		#4	100	95-100
3/4"	95	90-100		3/4"		100		#8	84	80-100
1/2"	74		_	1/2"		100		#16	60	50-85
3/8"	55	20-55	_	3/8"		85-100		#30	38	25-60
#4	10	0-10		#4		10-30		#50	18	10-30
#8 #200	5	0-5	_	#8 #200		0-10		#100	6 2.8	2-10
	cific Gravity	2.674	_	#200	ific Gravity:		1	#200	2.8 cific Gravity:	0-3 2.675
Absorption		1.38	-	Absorption				Absorption		1.23
Dry-Rodded Unit Wt: 102				ed Unit Wt:			Fineness Modulus:		2.94	
Diyitouu		102	-	Bry Houdo				T monoco I		2.01
		Batch	Weig	hts - Po	unds or	Ounces	Per	Batch V	/olumes	
Compone	ent	Cook wain								
		Sack weigi	nts no le	onger used	Cu	ubic Yaro	t t	Ft ³ per C	ubic Yard	
Cement		Sack weigi	nts no le	onger used	Cı	ubic Yaro 635.0			Cubic Yard 231	
Cement Mixing Wa	ater		"	onger used	Cı			3.2		
Mixing Wa Coarse Ag	ater ggregate		"	onger used	Cı	635.0 305.0 1680.0	SSD	3.2 4.8 10.	231 888 .068	
Mixing Wa Coarse Ag Inter. Agg	ater ggregate regate		11 11 11	onger used	Сı 	635.0 305.0 1680.0 0.0	SSD SSD	3.2 4.8 10.	231 888 068 0	
Mixing Wa Coarse Ag Inter. Agg Fine Aggr	ater ggregate regate		" " " " " "	onger used	<u>С</u> і	635.0 305.0 1680.0 0.0 1200.0	SSD SSD SSD	3.2 4.8 10. 7.	231 888 068 0 189	
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200	ater ggregate regate egate		11 11 11	onger used	Сı 	635.0 305.0 1680.0 0.0 1200.0 4.00	SSD SSD SSD fl oz	3.2 4.8 10. 7. 0.0	231 888 068 0 189 004	1.010
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200	ater ggregate regate		" " " " " " "	onger used		635.0 305.0 1680.0 0.0 1200.0 4.00 12.00	SSD SSD SSD fl oz fl oz	3.2 4.8 10. 7. 0.0 0.0	231 888 068 0 189 004 013	1.010 1.109
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200	ater ggregate regate egate		""	onger used		635.0 305.0 1680.0 1200.0 4.00 12.00 0.00	SSD SSD SSD fl oz fl oz fl oz	3.: 4.8 10. 7. 0.0 0.0 0.0	231 888 068 0 189 004 013 000	1.010 1.109 1.000
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200	ater ggregate regate egate		" " " " " " " " " " " " " " " " " " "	onger used		635.0 305.0 1680.0 1200.0 4.00 12.00 0.00	SSD SSD SSD fl oz fl oz	3.: 4.: 10. 7. 0.: 0.: 0.: 0.: 0.:	231 888 068 0 189 004 013	1.010 1.109 1.000 1.399
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %:	ater ggregate regate egate enium 1466		" " " " " " " " " " " " " " " " " " "	onger used		635.0 305.0 1680.0 1200.0 4.00 12.00 0.00	SSD SSD SSD fl oz fl oz fl oz fl oz	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 0.0	231 888 068 0 189 004 013 000 000	1.010 1.109 1.000 1.399
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %:	ater ggregate egate egate enium 1466 6.0		" " " " " " " " " " " " " " " " " " "			635.0 305.0 1680.0 1200.0 4.00 12.00 0.00 0.00	SSD SSD SSD fl oz fl oz fl oz fl oz	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 0.0	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "			635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1	SSD SSD SSD fl oz fl oz fl oz fl oz lbs.	3.2 4.8 10. 7. 0.0 0.0 0.0 0.0 0.0 0.0 27.	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate egate enium 1466 6.0		" " " " " " " " " " " " " " " " " " "		Probable 2	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1 8-day Stren	SSD SSD SSD fl oz fl oz fl oz fl oz gth (psi):	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 20 Slump or S	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1 8-day Stren Slump Flow	SSD SSD SSD fl oz fl oz fl oz fl oz gth (psi):	3.3 4.8 10. 7. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 20 Slump or S Air content	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1 8-day Stren Slump Flow t (%):	SSD SSD SSD fl oz fl oz fl oz fl oz fl oz gth (psi): y (in):	3.3 4.4 10. 7. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 2 Slump or S Air content Water/Cem	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1 8-day Stren Slump Flow t (%): ent Ratio (II	SSD SSD SSD fl oz fl oz fl oz fl oz fl oz gth (psi): y (in):	3.2 4.8 100 7. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 277 5200 4 5.7 0.48	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 2 Slump or S Air content Water/Cem	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1 8-day Stren 6lump Flow t (%): ent Ratio (II ty (pcf):	SSD SSD SSD fl oz fl oz	3.: 4.(10. 7. 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 2: Slump or S Air content Water/Cem Wet Densi Nom. Max	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1 8-day Stren Slump Flow t (%): ent Ratio (II ty (pcf): . aggregate	SSD SSD SSD fl oz fl oz sibs.	3.2 4.8 100 7. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 277 5200 4 5.7 0.48	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 2: Slump or S Air content Water/Cem Wet Densi Nom. Max Volume of	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1 8-day Stren Slump Flow t (%): ent Ratio (II ty (pcf): . aggregate coarse agg	SSD SSD SSD fl oz fl oz sibs.	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 1.0 27. 5200 4 5.7 0.48 141.5 0.75"	231 888 068 0 189 004 013 000 000 620 013	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 2: Slump or S Air content Water/Cem Wet Densi Nom. Max	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 0.00 3821.1 8-day Stren Slump Flow i (%): ent Ratio (II ty (pcf): . aggregate coarse agg ume of cor	SSD SSD SSD fl oz fl oz	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 1.0 27. 5200 4 5.7 0.48 141.5 0.75"	231 888 068 0 189 004 013 000 000 620	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate enium 1466 6.0 Compre	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 2: Slump or S Air content Water/Cem Wet Densi Nom. Max. Volume of per unit vol	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 3821.1 8-day Stren Slump Flow i (%): ent Ratio (II ty (pcf): . aggregate coarse agg ume of cor n Content	SSD SSD SSD fl oz fl oz	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 1.0 27. 5200 4 5.7 0.48 141.5 0.75"	231 888 068 0 189 004 013 000 000 620 013	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals: Spec. No.	ater ggregate egate egate enium 1466 6.0 Size	essive Str	" " " " " " " " " " " " " " " " " " "		Probable 2: Slump or S Air content Water/Cem Wet Densi Nom. Max Volume of per unit vol Chloride lo	635.0 305.0 1680.0 0.0 1200.0 4.00 12.00 0.00 3821.1 8-day Stren Slump Flow i (%): ent Ratio (II ty (pcf): . aggregate coarse agg ume of cor n Content	SSD SSD SSD fl oz fl oz	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 1.0 27. 5200 4 5.7 0.48 141.5 0.75"	231 888 068 0 189 004 013 000 000 620 013	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5 0.33 Max
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals:	ater ggregate egate egate enium 1466 6.0 Size	essive Str	" " " " " " " " " " " " " " " " " " "	PSI	Probable 2: Slump or S Air content Water/Cem Wet Densi Nom. Max Volume of per unit vol Chloride lo	635.0 305.0 1680.0 0.0 1200.0 12.00 0.00 0.00 3821.1 8-day Stren Slump Flow t (%): ent Ratio (II ty (pcf): . aggregate coarse agg ume of cor n Content ber for Class	SSD SSD SSD fl oz fl oz	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 0.0 1.0 27. 5200 4 5.7 0.48 141.5 0.75"	231 888 068 0 189 004 013 000 000 620 013 0.37	1.010 1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5 0.33 Max
Mixing Wa Coarse Ag Inter. Agg Fine Aggr AE 200 MasterGle Air %: Totals: Spec. No.	ater ggregate egate egate enium 1466 6.0 Compre Size	essive Str	" " " " " " " " " " " " " " " " " " "	PSI	Probable 2/ Slump or S Air content Water/Cem Wet Densi Nom. Max Volume of per unit vol Chloride lo SAM Num	635.0 305.0 1680.0 0.0 1200.0 12.00 0.00 0.00 3821.1 8-day Stren Slump Flow t (%): ent Ratio (II ty (pcf): . aggregate coarse agg ume of cor n Content ber for Class	SSD SSD SSD fl oz fl oz	3.2 4.4 10. 7. 0.0 0.0 0.0 0.0 0.0 1.0 27. 5200 4 5.7 0.48 141.5 0.75"	231 888 068 0 189 004 013 000 000 620 013 0.37	1.109 1.000 1.399 Theoretical Max Sp 150.48 Specifications 4000 4 4.5-7.5 0.33 Max

				P	State of					
					tment of ⁻ & Public F		ation			
						acilities				
	Su	ວ plier S ເ Admixture								3)
Supplier:	XYZ				Example			•		
Admixtur	re							Mfg. Recomm	ended	Mix Design dosage range
Required	A ##= = b == =	- 4-							Check box if attached	
for: 501	Attachme	ant and deliv		stem certifi	ration					design
		n computatio								
501		on content te								
,		ager's certific		0 0		0	s			
,		ous materials					740.0			
	0	ter and ice te gregate quali					on 712-2.	01		
	0	gregate qual gregate grad	,				2 or ATM	530		
		gate quality								
	00	gate gradatio								
		egate quality								
		gradation te admixture ce					J3-2.02 C	or ATM 530		
		manufacture					a simulta	aneouslv*		
-		ive strength t					<u> </u>	,		
		of mixture te								
		neoretical un								
		ompressive s 's letter or as	-					tv/		
Einerin		s letter of as	STIOW				працын	Ly		
Supplier F	Remarks:									
								_		
									AK P.E. Star	mp (501)
Approving	Engineer's	Remarks:								
Page 2, For	rm 25D-203 -	3 or less ago	gregates	s						

Form 25D_203 Required Attachments

Required		Check box if attached	Check box if the material is not used in this mix					
for:	Attachments		design					
501	NRMCA plant and delivery system certification							
501, 550	Mix Design computations per Contract requirements							
501	Chloride ion content testing report per AASHTO T 260							
501, 550	Plant manager's certification of weighing and measuring devices							
501, 550	Cementitious materials certifications per AASHTO M 85							
501, 550	Mixing water and ice test results or certifications per Subsection 712-2.01							
501, 550	Coarse aggregate quality test results per Subsection 703-2.02							
501, 550	Coarse aggregate gradtion test results per Subsection 703-2.02 or ATM 530							
501, 550	Fine aggregate quality test results per Subsection 703-2.01							
501, 550	Fine aggregate gradation test results per Subsection 703-2.01 or ATM 530							
501, 550	Other aggregate quality test results per Subsection 703-2.01 or 703-2.02							
501, 550	Other agg. gradation test results per Subsection 703-2.01 or 703-2.02 or ATM	530						
501, 550	Chemical admixture certifications per Subsection 711-2.02							
501, 550	Admixture manufacturer's certification of compatibility for adding simultaneous	ly*						
501, 550	Compressive strength test data							
501, 550	Test data of mixture temperature, slump, unit weight and air content							
501, 550	Graph of theoretical unit weight vs. % air (for air-entrained concrete)							
501, 550	Graph of compressive strength vs. % air (for air-entrained concrete)							
* Either m	anufacturer's letter or as shown in admixture certifications of compatibility							

Memorial: Victims of Stalin Repression

Questions?

- Rich Giessel
- DOT&PF State Quality Assurance Engineer
- richard.giessel@alaska.gov
- (907) 269-6244

