# ASCE 7-22 Snow Load Updates

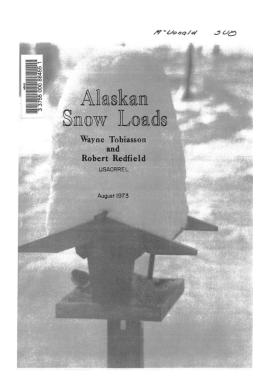
SEAAK Lunch Meeting January 19<sup>th</sup>, 2022 Sterling Strait, SE



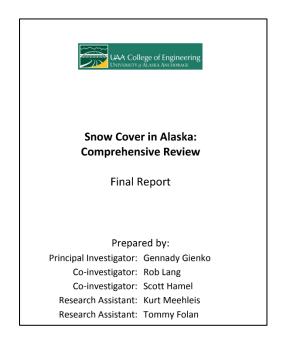
#### Summary

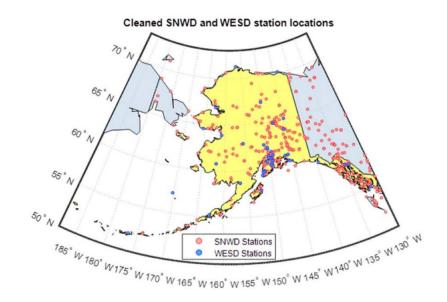
- Updated Snow Loads for Alaska Locations
- Ground Snow Loads now 'Reliability Targeted'
- Thermal Factor Revised
- Snow Drift Calculation now Location-Dependent




## Why do Codes Change?

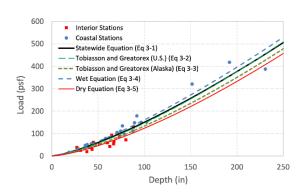
- Bad Things Happen
- Additional Data Available
- Changing Technology
- Research and Development
- Lower Reliance on Hand Calc Methods
- Design by Committee Politics, Personalities, and Pedantics





- Current Code (ASCE 7-16)
  - 33 Alaska Locations
  - Based on 1973 Paper Alaskan Snow Loads (Tobiasson & Redfield)
- Inadequate Coverage
- Inaccurate Loads in Some Locations
  - Several AHJs amended local snow loads







- UAA Research Project
  - Collect Snow Load Climate Data
    - 451 Weather Stations
  - Completed Probability Analysis of Data
  - Selected 50 yr MRI for each site
- UAA Research Published 2018





- SEAAK Snow Load Committee
  - Selected 50 communities for new table
  - Reviewed snow loads for each location
- Published whitepaper 2020
- Proposal to ASCE Snow Loads Committee
  - Accepted with minimal comments





#### ALASKA SNOW LOADS FOR THE 2022 UPDATE OF ASCE 7

by

Structural Engineers Association of Alaska Snow Loads Committee December 2019

> Primary Authors Scott Hamel, PE, SE, PhD, UAA Kurt Meehleis, PE

> > Snow Loads Committee

Scott Gruhn, PE, SE, BBFM Engineers (Chair)
Scott Hamel, PE, SE, PhD, UAA

Jake Horazdovsky, PE, SE, PDC Engineers
Greg Latreille, PE, SE, BBFM Engineers
Colin Maynard, PE, SE, BBFM Engineers
Kurt Meehleis, PE
David Stierwalt, PE, SE, Reid Middleton
Sterling Strait, PE, SE, Alyeska Pipeline

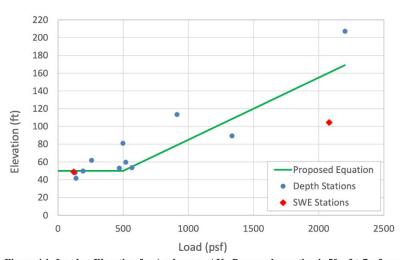
|                                    | ow Loads, p <sub>k</sub> , for Ala<br>Ground | •              |
|------------------------------------|----------------------------------------------|----------------|
|                                    | Snow Load                                    |                |
| City/Town                          | (lb/ft²)                                     | Elevation (ft) |
| Adak                               | 25                                           | 100            |
| Anchorage/Eagle River <sup>3</sup> | 50                                           | 500            |
| Arctic Village                     | 30                                           | 2,100          |
| ethel                              | 40                                           | 100            |
| Bettles                            | 80                                           | 700            |
| antwell                            | 85                                           | 2,100          |
| Cold Bay                           | 35                                           | 100            |
| ordova                             | 100                                          | 100            |
| eadhorse                           | 25                                           | 100            |
| elta Junction                      | 40                                           | 400            |
| illingham                          | 110                                          | 100            |
| mmonak                             | 100                                          | 100            |
| airbanks                           | 60                                           | 1200           |
| ort Yukon                          | 50                                           | 400            |
| alena                              | 60                                           | 200            |
| irdwood                            | 140                                          | 200            |
| lennallen                          | 45                                           | 1,400          |
| aines                              | 185                                          | 100            |
| oly Cross                          | 120                                          | 100            |
| omer <sup>3</sup>                  | 45                                           | 500            |
| iamna                              | 80                                           | 200            |
| Ineau                              | 70                                           | 100            |
| aktovik                            | 45                                           | 100            |
| enai/Soldotna                      | 65                                           | 200            |
| etchikan                           | 30                                           | 100            |
| obuk                               | 90                                           | 200            |
| odiak                              | 40                                           | 100            |
| otzebue                            | 60                                           | 100            |
| IcGrath                            | 65                                           | 400            |
| enana                              | 75                                           | 400            |
| ikiski                             | 80                                           | 200            |
| lome                               | 70                                           | 100            |
| almer/Wasilla                      | 50                                           | 500            |
| etersburg                          | 90                                           | 100            |
| Point Hope                         | 45                                           | 100            |
| aint Lawrence Island               | 95                                           | 100            |

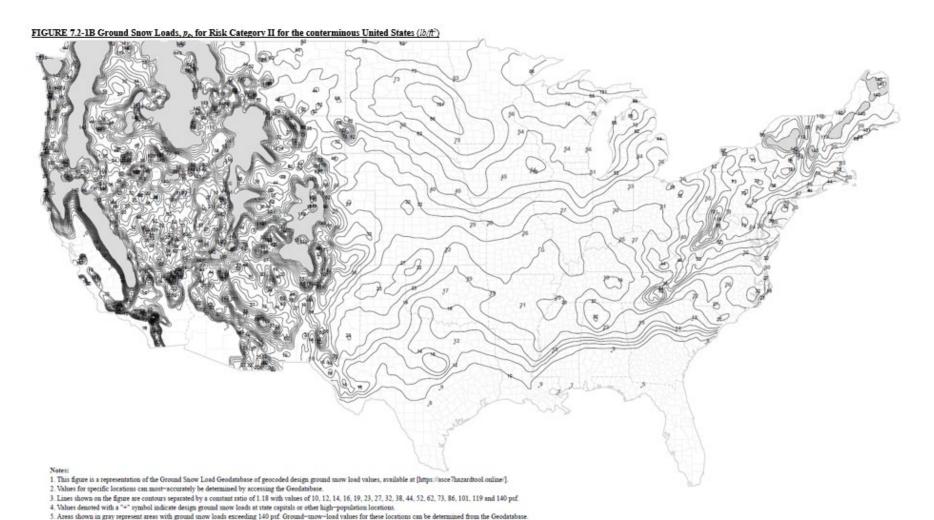
- New Values for ASCE 7-22
- 50 Locations
  - Population Centers
  - Geographically Distributed
- Data on Additional Sites Available
  - www.seaak.net

| Saint Saud Jaland  | - 10 | 400   |
|--------------------|------|-------|
| Saint Paul Island  | 40   | 100   |
| Seward             | 60   | 100   |
| Sitka              | 50   | 100   |
| Talkeetna          | 120  | 400   |
| Tok                | 35   | 1,700 |
| Umiat              | 30   | 300   |
| Unalakleet         | 35   | 100   |
| Unalaska           | 75   | 100   |
| Utqiagvik (Barrow) | 25   | 100   |
| Valdez             | 160  | 100   |
| Wainwright         | 25   | 100   |
| Whittier           | 270  | 100   |
| Willow             | 80   | 300   |
| Yakutat            | 140  | 100   |

- Anchorage and Homer
  - Geographically Large with Significant Elevation Change
  - Greater Snow at Higher Elevations

The ground snow load shall be increased by 7.0 psf for every 100 ft above the cited elevation.



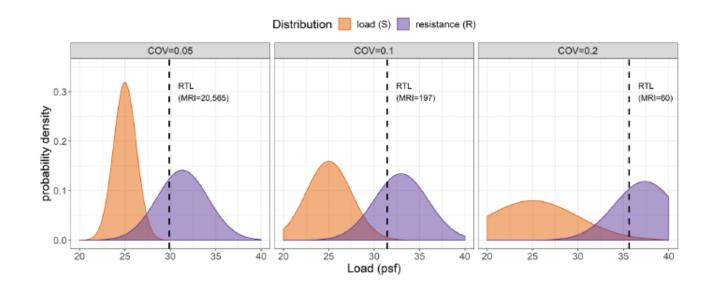


Figure 4.1: Load vs Elevation for Anchorage, AK. Proposed equation is 50psf + 7psf per 100 feet of elevation above 500 feet.

- ♦ Anchorage Bowl = 50 psf
- Glen Alps = 155 psf (El = 2,200 ft)

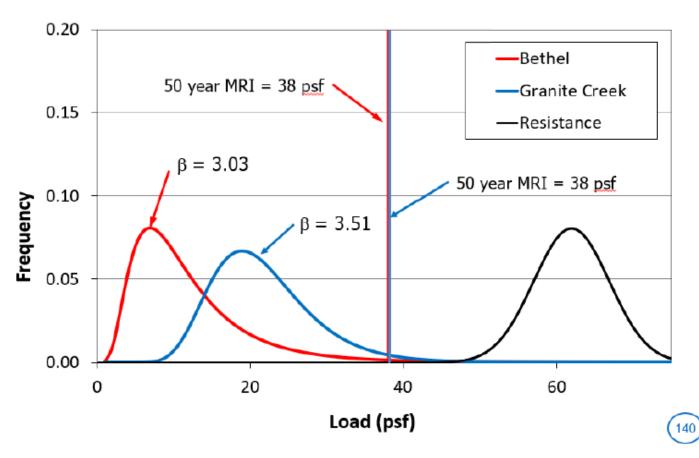
- New Ground Snow Load Map Created for L48
  - Similar Issues to AK
  - 9 State-Specific Tables in ASCE 7-16
- Data Analysis Project for L48 States
  - 7,964 Snow Measurement Stations
  - Utilized Machine Learning to Determine Depth-Weight Ratio
- Converted to Reliability-Targeted Loads
  - Individual Maps in Code for each Risk Cat
  - Similar to Wind Load Transition in ASCE 7-10








- ASCE 7-22 Ground Snow Loads are now 'Reliability Targeted'
  - Ultimate Level Loads
- Aligned with Requirements of ASCE 7 Chapter 1
  - Risk Cat II = Annual Probability of Failure of 3 x  $10^{-5}$  (30,000 yr intvl)
- Load Combinations Revised
  - 1.0 Factor for LRFD
  - 0.7 Factor for ASD


Table 1.3-1 Target Reliability (Annual Probability of Failure,  $P_F$ ) and Associated Reliability Indices ( $\beta$ )<sup>1</sup> for Load Conditions That Do Not Include Earthquake, Tsunami, or Extraordinary Events<sup>2</sup>

|                                                                                  |                                         | Risk Category                          |                                         |                                        |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|--|--|--|
| Basis                                                                            | 1                                       | II                                     | III                                     | IV                                     |  |  |  |
| Failure that is not sudden and does not lead to widespread progression of damage | $P_F = 1.25 \times 10^{-4} / \text{yr}$ | $P_F = 3.0 \times 10^{-5} / \text{yr}$ | $P_F = 1.25 \times 10^{-5} / \text{yr}$ | $P_F = 5.0 \times 10^{-6} / \text{yr}$ |  |  |  |
|                                                                                  | $\beta = 2.5$                           | $\beta = 3.0$                          | $\beta = 3.25$                          | $\beta = 3.5$                          |  |  |  |
| Failure that is either sudden or leads to                                        | $P_F = 3.0 \times 10^{-5} / \text{yr}$  | $P_F = 5.0 \times 10^{-6} / \text{yr}$ | $P_F = 2.0 \times 10^{-6} / \text{yr}$  | $P_F = 7.0 \times 10^{-7} / \text{yr}$ |  |  |  |
| widespread progression of damage                                                 | $\beta = 3.0$                           | $\beta = 3.5$                          | $\beta = 3.75$                          | $\beta = 4.0$                          |  |  |  |
| Failure that is sudden and results in widespread progression of damage           | $P_F = 5.0 \times 10^{-6} / \text{yr}$  | $P_F = 7.0 \times 10^{-7} / \text{yr}$ | $P_F = 2.5 \times 10^{-7} / \text{yr}$  | $P_F = 1.0 \times 10^{-7} / \text{yr}$ |  |  |  |
|                                                                                  | $\beta = 3.5$                           | $\beta = 4.0$                          | $\beta = 4.25$                          | $\beta = 4.5$                          |  |  |  |

- Takes into Accounts for Multiple Uncertainties
  - Load (snow)
  - Resistance (materials)
- Greater Uncertainty = Higher Design Load
  - Locations with Rare, Significant Storms will have Higher Loads
  - Locations with Regular, Predictable Snow will have Lower Loads



## Why This Change (Alaska)?



Credit: Dr. Scott Hamel UAA

|                                    | 7.2-1 Snow Lo |       |             |               |     |     |
|------------------------------------|---------------|-------|-------------|---------------|-----|-----|
| City/Town                          | Elevation     | Groun | Winter Wind |               |     |     |
|                                    | (ft)          |       | Risk Cat    | Parameter, W2 |     |     |
|                                    |               | - 1   | II          | III           | IV  |     |
| Adak                               | 100           | 32    | 40          | 46            | 50  | 0.7 |
| Anchorage/Eagle River <sup>1</sup> | 500           | 64    | 80          | 92            | 100 | 0.2 |
| Arctic Village                     | 2,100         | 38    | 48          | 55            | 60  | 0.2 |
| Bethel                             | 100           | 51    | 64          | 74            | 80  | 0.7 |
| Bettles                            | 700           | 102   | 128         | 147           | 160 | 0.2 |
| Cantwell                           | 2,100         | 109   | 136         | 156           | 170 | 0.3 |
| Cold Bay                           | 100           | 45    | 56          | 64            | 70  | 0.8 |
| Cordova                            | 100           | 128   | 160         | 184           | 200 | 0.3 |
| Deadhorse                          | 100           | 32    | 40          | 46            | 50  | 0.6 |
| Delta Junction                     | 400           | 51    | 64          | 74            | 80  | 0.5 |
| Dillingham                         | 100           | 141   | 176         | 202           | 220 | 0.5 |
| Emmonak                            | 100           | 128   | 160         | 184           | 200 | 0.7 |
| Fairbanks                          | 1200          | 77    | 96          | 110           | 120 | 0.1 |
| Fort Yukon                         | 400           | 64    | 80          | 92            | 100 | 0.2 |
| Galena                             | 200           | 77    | 96          | 110           | 120 | 0.3 |
| Girdwood                           | 200           | 179   | 224         | 258           | 280 | 0.2 |
| Glennallen                         | 1,400         | 58    | 72          | 83            | 90  | 0.2 |
| Haines                             | 100           | 237   | 296         | 340           | 370 | 0.7 |
| Holy Cross                         | 100           | 154   | 192         | 221           | 240 | 0.2 |
| Homer <sup>3</sup>                 | 500           | 58    | 72          | 83            | 90  | 0.5 |
| Iliamna                            | 200           | 102   | 128         | 147           | 160 | 0.5 |
| Juneau                             | 100           | 90    | 112         | 129           | 140 | 0.5 |
| Kaktovik                           | 100           | 58    | 72          | 83            | 90  | 0.6 |
| Kenai/Soldotna                     | 200           | 83    | 104         | 120           | 130 | 0.4 |
| Ketchikan                          | 100           | 38    | 48          | 55            | 60  | 0.5 |
| Kobuk                              | 200           | 115   | 144         | 166           | 180 | 0.6 |
| Kodiak                             | 100           | 45    | 56          | 64            | 70  | 0.6 |
| Kotzebue                           | 100           | 77    | 96          | 110           | 120 | 0.6 |
| McGrath                            | 400           | 83    | 104         | 120           | 130 | 0.2 |
| Nenana                             | 400           | 96    | 120         | 138           | 150 | 0.2 |
| Nikiski                            | 200           | 102   | 128         | 147           | 160 | 0.4 |
| Nome                               | 100           | 90    | 112         | 129           | 140 | 0.6 |
| Palmer/Wasilla                     | 500           | 64    | 80          | 92            | 100 | 0.2 |
| Petersburg                         | 100           | 122   | 152         | 175           | 190 | 0.2 |
| Point Hope                         | 100           | 58    | 72          | 83            | 90  | 0.6 |

- New Table 7.2-1 in ASCE 7-22
  - Values for each Risk Category
- 50 Locations
  - Population Centers
  - Geographically Distributed
- Additional Info Available
  - www.seaak.net

| Saint Lawrence Island | 100   | 122 | 152 | 175 | 190 | 0.8 |
|-----------------------|-------|-----|-----|-----|-----|-----|
| Saint Paul Island     | 100   | 51  | 64  | 74  | 80  | 0.9 |
| Seward                | 100   | 77  | 96  | 110 | 120 | 0.5 |
| Sitka                 | 100   | 64  | 80  | 92  | 100 | 0.4 |
| Talkeetna             | 400   | 154 | 192 | 221 | 240 | 0.2 |
| Tok                   | 1,700 | 45  | 56  | 64  | 70  | 0.2 |
| Umiat                 | 300   | 38  | 48  | 55  | 60  | 0.2 |
| Unalakleet            | 100   | 45  | 56  | 64  | 70  | 0.7 |
| Unalaska              | 100   | 96  | 120 | 138 | 150 | 0.6 |
| Utqiagvik (Barrow)    | 100   | 32  | 40  | 46  | 50  | 0.6 |
| Valdez                | 100   | 205 | 256 | 294 | 320 | 0.3 |
| Wainwright            | 100   | 32  | 40  | 46  | 50  | 0.6 |
| Whittier              | 100   | 346 | 432 | 497 | 540 | 0.3 |
| Willow                | 300   | 102 | 128 | 147 | 160 | 0.2 |
| Yakutat               | 100   | 179 | 224 | 258 | 280 | 0.3 |

## Thermal Factor (c<sub>t</sub>)

- Accounts for Building Heat
- Last Revised in 1995
  - Used R-25 as typical roof insulation
  - Low by modern standards
- Better Insulation = More Roof Snow
   2022 Updates:
- Increased Factor for Cold Roof
- New Table for Hot Roof
  - Accounts for Insulation from Snow

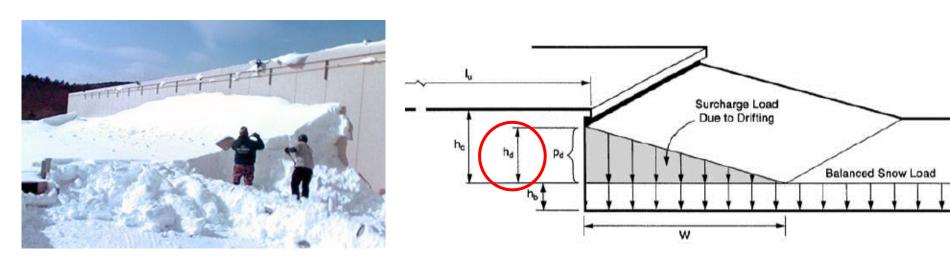




## Thermal Factor (c<sub>t</sub>)

Table 7.3-2 Thermal Factor,  $C_t$ 

| Thermal Condition <sup>a</sup>                                                             | C                              |
|--------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                            | Ut.                            |
| All structures except as indicated below                                                   | <del>1.0</del> See Table 7.3-3 |
| Unheated, open-air structures, structures kept just above freezing, and                    | <del>1.1</del> 1.2             |
| others with cold, ventilated roofs meeting the minimum requirements of                     |                                |
| the appropriate energy conservation code                                                   |                                |
| Freezer building                                                                           | 1.3                            |
| Continuously heated greenhouses with a roof having a thermal resistance                    | 0.85                           |
| (R-value) less than 2.0 ft <sup>2</sup> ··F·h /BTU (0.4 m <sup>2</sup> ·K /W) or a thermal |                                |
| transmittance (U-factor) greater than 0.5 BTU/ft2··F·h (2.5 W/m2·K)                        |                                |
|                                                                                            |                                |


These conditions shall be representative of the anticipated conditions during winters for the life of the structure.

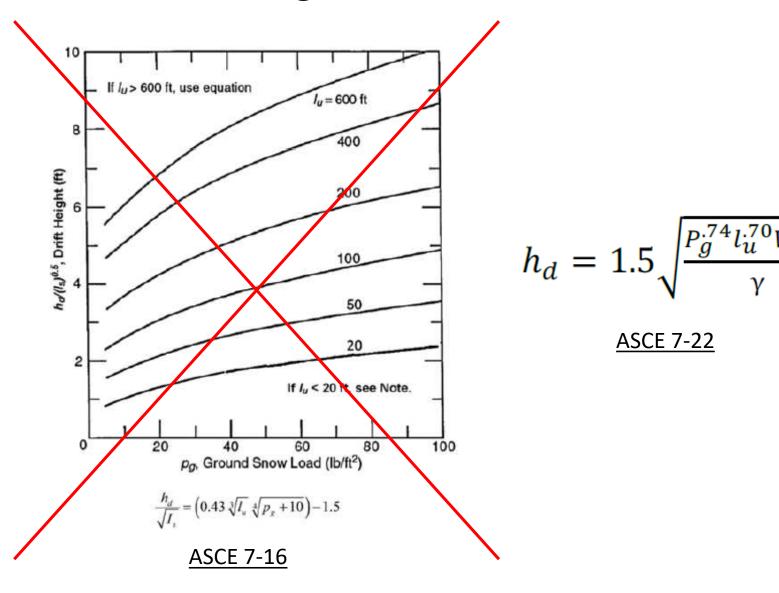

bGreenhouses with a constantly maintained interior temperature of 50°F (10°C) or more at any point 3 ft (0.9 m) above the floor level during winters and having either a maintenance attendant on duty at all times or a temperature alarm system to provide warning in the event of a heating failure.

Table 7.3-3 Thermal Factor, C<sub>t</sub>, for Heated Structures with Unventilated Roofs

|                                                   |                                           | $P_{g}\left( \mathrm{psf}\right)$ |      |      |      |      |      |      |
|---------------------------------------------------|-------------------------------------------|-----------------------------------|------|------|------|------|------|------|
| R <sub>roof</sub><br>(ft <sup>2</sup> ··F·h /BTU) | <i>U<sub>roof</sub></i><br>(BTU/ft²·⁺F·h) | 10                                | 20   | 30   | 40   | 50   | 60   | ≥70  |
| 20                                                | 0.050                                     | 1.20                              | 1.11 | 1.05 | 1.01 | 1.00 | 1.00 | 1.00 |
| 30                                                | 0.033                                     | 1.20                              | 1.17 | 1.14 | 1.13 | 1.12 | 1.11 | 1.10 |
| 40                                                | 0.025                                     | 1.20                              | 1.19 | 1.17 | 1.16 | 1.16 | 1.15 | 1.15 |
| 50                                                | 0.020                                     | 1.20                              | 1.20 | 1.19 | 1.19 | 1.19 | 1.18 | 1.18 |

- Snow Drift Formation tied to Winter Windiness
  - W2 = Winter Wind = % time wind speed > 10 mph in winter (Oct Apr)
  - Obtained from Map or Table in ASCE 7
- Drift Height (h<sub>d</sub>)Formula Updated to be Location Specific





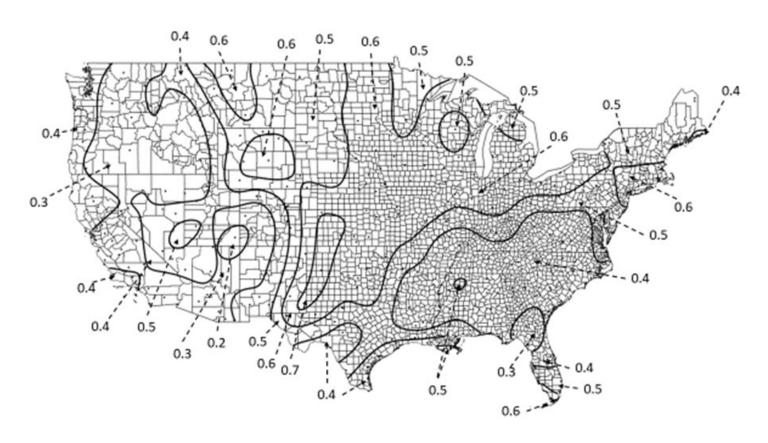



Fig 7.6-1: W2 Map for L48

*Note: W2 = 0.4 ≈ Current Formula* 

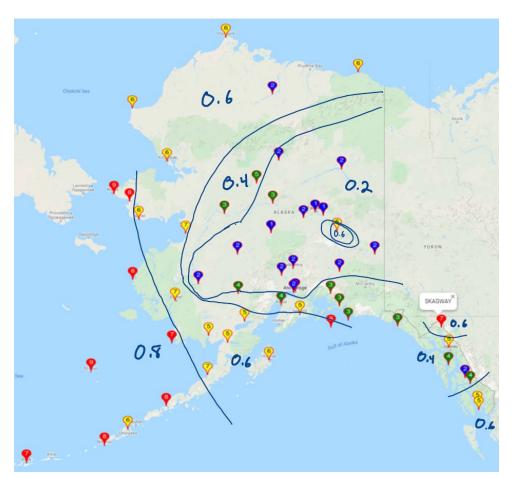
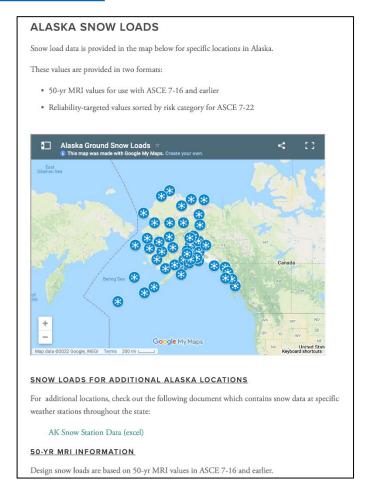



Table 7.2-1 Ground Snow Loads, pg, for Alaskan Locations

| Table<br>City/Town     | Elevation | Groun         | d Snow Loa | Winter Wind |     |                           |     |   |
|------------------------|-----------|---------------|------------|-------------|-----|---------------------------|-----|---|
|                        | (ft)      | Risk Category |            |             |     | Parameter, W <sub>2</sub> |     |   |
|                        |           | - 1           | II         | Ш           | IV  |                           |     |   |
| Adak                   | 100       | 32            | 40         | 46          | 50  |                           | 0.7 |   |
| Anchorage/Eagle River³ | 500       | 64            | 80         | 92          | 100 |                           | 0.2 |   |
| Arctic Village         | 2,100     | 38            | 48         | 55          | 60  | 7                         | 0.2 | 1 |
| Bethel                 | 100       | 51            | 64         | 74          | 80  |                           | 0.7 | ١ |
| Bettles                | 700       | 102           | 128        | 147         | 160 |                           | 0.2 | ١ |
| Cantwell               | 2,100     | 109           | 136        | 156         | 170 |                           | 0.3 |   |
| Cold Bay               | 100       | 45            | 56         | 64          | 70  |                           | 0.8 |   |
| Cordova                | 100       | 128           | 160        | 184         | 200 |                           | 0.3 |   |
| Deadhorse              | 100       | 32            | 40         | 46          | 50  |                           | 0.6 |   |
| Delta Junction         | 400       | 51            | 64         | 74          | 80  |                           | 0.5 |   |
| Dillingham             | 100       | 141           | 176        | 202         | 220 |                           | 0.5 | 1 |
| Emmonak                | 100       | 128           | 160        | 184         | 200 | 1                         | 0.7 | I |
| Fairbanks              | 1200      | 77            | 96         | 110         | 120 |                           | 0.1 | Ĺ |
| Fort Yukon             | 400       | 64            | 80         | 92          | 100 | 1                         | 0.2 |   |
| Galena                 | 200       | 77            | 96         | 110         | 120 |                           | nα  |   |


ASCE 7-22 Table 7.2-1

Rough W2 Map for Alaska

*Note: W2 = 0.4 ≈ Current Formula* 

#### Additional Resources

- https://seaak.net/alaska-snow-loads
- Mapped Alaska Snow Values
- UAA Research Paper
- Data on 200+ AK Sites
- Excel File with Sortable Data



#### References

- Alaska Snow Loads
  - SEAAK Whitepaper: "Alaska Snow Loads for the 2022 Update of ASCE 7" 2020
  - Gienko et. Al, "Snow Cover in Alaska: Comprehensive Review" (2018) UAA Graduate Thesis
- Reliability-Targeted Loads
  - Maguire et. al, "Ground Snow Loads for ASCE 7-22 What Has Changed and Why?" (2021).
     Mathematics and Statistics Faculty Publications. Paper 277.
     https://digitalcommons.usu.edu/mathsci facpub/277
  - SEAAK Whitepaper: "Reliability Targeted Alaska Ground Snow Loads for the 2022 Edition of ASCE 7 Standard"
- Thermal Factor
  - O'Rourke, Michael and Russell, Scott "Snow Thermal Factors for Structural Renovations." *Structure.* July 2019: 24-26. Print.
- Snow Drifting
  - O'Rourke M, and Cocca J., (2019) "Improved Snow Drift Relations" J. Structural Engineering ASCE. ASCE, ISSN 0733-9445, DOI:10.1061
  - O'Rourke M, Sinh, H., Cocca J., and Williams, T., (2019) "Winter Wind Parameter for Snow Drifts" J. Structural Engineering ASCE





## **ASCE 7-22 Snow Load Updates**

**Questions?** 

**Thank You!** 

